There is hardly a field in materials science where the physical nature of the surface is not an important feature. for example, in fatigue fracture, cracks nucleate at the surfaces of materials and the rate at which they nucleate is greatly influenced by the detailed topography of the surfaces. in the field of thin-film devices, the manufacturing tendency has been to reduce the size of electronic components. Surface-to- volume ratios are now exceedingly high. Young points out that we are not far from the point where we can anticipate devices employing single layers of atoms.(1) However, the device industry, which presently employs films in the 10- to 100-Å range, suffers very high failure rates due to surface imperfections, stacking-fault intersections, voids in the films, thermally induced pits, and multiple steps. as a result of these deficiencies, large resources have been employed to control the imperfections by close control of processing variables. in other areas, elaborate polishing, cleaning, and smoothing techniques have been developed in an effort to eliminate the variability associated with surfaces. However, none of these efforts can improve upon a detailed knowledge of the actual surface topography.


Slip Line Misfit Dislocation Profile Method Carbon Replica Slip Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. D. Young, Surface microtopography, Phys. Today 24, 42–48 (1971).CrossRefGoogle Scholar
  2. 2.
    O. Johari, in Characterization of Solid Surfaces (P. F. Kane and G. B. Larrabee, eds.) Scanning microscopy, Chapter 5, Plenum Press, New York (1974).Google Scholar
  3. 3.
    C. J. Cooke and P. Duncumb, Performance analysis of a combined electron microscope and electron probe microanalyser, EMMA, in Fifth International Congress on X-ray Optics and Microanalysis (G. Mollenstedt and K. H. Gaukler, eds.) pp. 245–247, Springer-Verlag, Berlin (1969).Google Scholar
  4. 4.
    M. H. Jacobs, Microstructural studies with a combined electron microscope and electron probe microanalyser (EMMA-3) Proc. 25th Anniv. Meeting EMAG Inst. Phys. (1971).Google Scholar
  5. 5.
    G. A. Hutchins, Electron probe microanalysis, in Characterization of Solid Surfaces (P. F. Kane and G. B. Larrabee, eds.) Chapter 18, Plenum Press, New York (1974).Google Scholar
  6. 6.
    C. Klemperer, Electron Optics, Cambridge University Press, London (1953).Google Scholar
  7. 7.
    G. Thomas, Transmission Electron Microscopy of Metals, J. Wiley and Sons, New York (1962).Google Scholar
  8. 8.
    R. Haine and V. E. Cosslett, The Electron Microscope, the Present State of the Art, Interscience, New York (1961).Google Scholar
  9. 9.
    R. D. Heidenreich, Fundamentals of Transmission Electron Microscopy, Interscience, New York (1964).Google Scholar
  10. 10.
    P. Grivet, Electron Optics, Pergamon, London (1965).Google Scholar
  11. 11.
    P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals, Butterworths, London (1965).Google Scholar
  12. 12.
    S. Amelinckx, The Direct Observation of Dislocations, Academic Press, London (1964).Google Scholar
  13. 13.
    S. Amelinckx (ed.), Modern Diffraction and Imaging Techniques in Material Science, North-Holland, Amsterdam (1970).Google Scholar
  14. 14.
    C. E. Hall, Introduction to Electron Microscopy, 2nd edition, McGraw-Hill, New York (1966).Google Scholar
  15. 15.
    R. W. Wyckoff, Electron Microscopy, Technique, and Applications, Interscience, New York (1949).Google Scholar
  16. 16.
    D. Kay, Techniques for Electron Microscopy, Blackwell Scientific Publications, Oxford (1961).Google Scholar
  17. 17.
    L. E. Thomas, Course notes in electron microscopy, Univ. of Pennsylvania (1971).Google Scholar
  18. 18.
    A. Howie, in Techniques for Electron Microscopy (D. Kay, ed.) pp. 438–440, F. A. Davis Co., Philadelphia (1965).Google Scholar
  19. 19.
    J. F. Nankivell, The theory of electron stereo microscopy, Optik 20, 171–198 (1963).Google Scholar
  20. 20.
    Handbook for Wild ST4 Mirror Stereoscope, P2 307e, Wild, Heerbrugg (1967).Google Scholar
  21. 21.
    A. Boyde, Observations on enamel and dentine by surface electron microscopy, J. Roy. Microscop. Soc. 86, 359–365 (1967).CrossRefGoogle Scholar
  22. 22.
    A. Boyde, Practical problems and methods in three-dimensional analysis of scanning electron microscopy images, in Proceedings of the Third Annual Scanning Electron Microscopy Symposium, pp. 107–112, IIT Research Institute, Chicago (1970).Google Scholar
  23. 23.
    D. E. Bradley, J. S. Halliday, and W. Hirst, Stereoscopic reflection electron microscopy, Proc. Phys. Soc. (London) 69, 484–486 (1956).CrossRefGoogle Scholar
  24. 24.
    J. S. Halliday, Reflection electron microscopy, in Techniques for Electron Microscopy, pp. 306–324, Blackwell Scientific Publications, Oxford (1961).Google Scholar
  25. 25.
    S. J. Jones and A. Boyde, Experimental studies on the interpretation of bone surfaces studied with SEM, in Proceedings of the Third Scanning Electron Microscopy Symposium pp. 195–200 IIT Research Institute, Chicago (1970).Google Scholar
  26. 26.
    M. P. E. Desvaux and P. Charsley, Slip lines on pure copper deformed in tension and compression, Mater. Sci. Eng. 4, 221–230 (1969).CrossRefGoogle Scholar
  27. 27.
    P. Charsley and M. P. E. Desvaux, The behavior of Cu-12% Al under simple reversed stresses, Mater. Sci. Eng. 4, 211–220 (1969).CrossRefGoogle Scholar
  28. 28.
    C. Laird and D. J. Duquette, Mechanisms of fatigue crack nucleation, in Proceedings of Corrosion Fatigue Conference, Storrs, Conn., pp. 88–117, N.A.C.E., Houston, Texas (1972).Google Scholar
  29. 29.
    M. P. E. Desvaux, A replica technique for measuring incremental slip step heights, J. Sci. Instr., Ser. 2, 1, 558–560 (1968).CrossRefGoogle Scholar
  30. 30.
    G. A. Bassett, A new technique for decoration of cleavage and slip steps on ionic crystal surfaces, Phil. Mag. 3, 1042–1045 (1958).CrossRefGoogle Scholar
  31. 31.
    H. Bethge, Oberflächenstrukturen und kristalbaufehler in elektronenmikroskopischen bild, untersucht am NaCl, Phys. Stat. Sol. 2, 3–27 (1962).CrossRefGoogle Scholar
  32. 32.
    H. Bethge, Electron microscopic studies of surface structures and some relations to surface phenomena, Surf. Sci. 3, 33–41 (1964).CrossRefGoogle Scholar
  33. 33.
    J. G. Allpress and J. V. Sanders, Decoration of facets on silver, Phil. Mag. 9, 645–658 (1964).CrossRefGoogle Scholar
  34. 34.
    J. M. Finney, Univ. of Pennsylvania, Philadelphia, and ARL, Melbourne, Australia, private communication (1970).Google Scholar
  35. 35.
    H. I. Aaronson, C. Laird, and K. R. Kinsman, Mechanisms of diffusional growth of precipitate crystals, in Phase Transformations, ASM, pp. 313–390 (1970).Google Scholar
  36. 36.
    P. Lukáš, M. Klesnil, J. Krejči, and P. Ryš, Substructure of persistent slip bands in cyclically deformed copper, Phys. Stat. Sol. 15, 71–82 (1966).CrossRefGoogle Scholar
  37. 37.
    P. Lukaš, M. Klesnil, and J. Krejči, Dislocations and persistent slip bands in copper single crystals fatigued at low stress amplitude, Phys. Stat. Sol. 27, 545–558 (1968).CrossRefGoogle Scholar
  38. 38.
    P. Lukaš and M. Klesnil, Dislocation structures in fatigued Cu-Zn single crystals, Phys. Stat. Sol. 37, 833–842 (1970).CrossRefGoogle Scholar
  39. 39.
    P. Lukaš and M. Klesnil, Fatigue damage and resultant dislocation substructures, in Corrosion Fatigue Conference, Storrs, Conn., pp. 118–132, N.A.C.E., Houston, Texas (1972).Google Scholar
  40. 40.
    P. R. Swann, The dislocation distribution near the surface of deformed copper, Acta Met. 14, 900–903 (1966).CrossRefGoogle Scholar
  41. 41.
    I. R. Kramer and L. J. Demer, The effect of surface removal on the plastic behavior of Al single crystals, Trans. AIME 221, 780–786 (1961).Google Scholar
  42. 42.
    I. R. Kramer, The effect of surface removal on the plastic flow characteristics of metals, Trans. AIME 227, 1003–1010(1963).Google Scholar
  43. 43.
    D. M. Turley, Dislocation substructures and strain distributions beneath machined surfaces of 70/30 brass, J. Inst. Metals 99, 271–277 (1971).Google Scholar
  44. 44.
    A. R. Thölen, On the ambiguity between Moiré fringes and the electron diffraction contrast from closely spaced dislocations, Phys. Stat. Sol. (a) 2, 537–550 (1970).CrossRefGoogle Scholar
  45. 45.
    R. Sankaran and C. Laird, Studies of precipitate morphology and growth kinetics, unpublished work (1971).Google Scholar
  46. 46.
    C. Laird and H. I. Aaronson Direct observations of the thinning of θ2032 plates in Al-4% Cu by lateral movement of ledges J. Inst. Met. 96 222 1968Google Scholar
  47. 47.
    K. Shinohara, Behavior of misfit dislocations during interdiffusion, Ph.D. Thesis, Ohio State Univ. (1972).Google Scholar
  48. 48.
    K. E. Easterling and A. R. Thölen, A study of sintering using hot-stage electron microscopy, Met. Sci. J. 4, 130–135 (1970).Google Scholar
  49. 49.
    J. Weertman, Steady-state creep of crystals, J. Appl. Phys. 28, 1185–1189 (1957).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Campbell Laird
    • 1
  1. 1.School of Metallurgy and Materials ScienceUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations