Surface Composition by Analysis of Neutral and Ion Impact Radiation

  • C. W. White
  • D. L. Simms
  • N. H. Tolk

Abstract

A recently developed method for surface composition analysis is the SCANIIR (Surface Composition by Analysis of Neutral and Ion Impact Radiation) surface analysis technique.(1) This method has evolved from recent experiments(1–6) which show that visible, ultraviolet, and infrared radiation is produced when beams of low-energy ions or neutral particles impact on a solid surface.* Surface constituents are determined by identification and analysis of optical lines and bands that are produced in the collision process.

Keywords

Nickel Quartz Magnesium Dust Acetone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. White, D. L. Simms, and N. H. Tolk, Science 177, 481 (1972).CrossRefGoogle Scholar
  2. 2.
    C. W. White and N. H. Tolk, Phys. Rev. Letters 26, 486 (1971).CrossRefGoogle Scholar
  3. 3.
    N. H. Tolk, D. L. Simms. E. B. Foley, and C. W. White, Radiation Effects 18, 221 (1973).CrossRefGoogle Scholar
  4. 4.
    J. P. Meriaux, J. M. Gutierrez, Ch. Schneider, R. Goutte, and CI. Guilland, Nouv. Rev. Opt. Appl. 2, 81 (1971).CrossRefGoogle Scholar
  5. 5.
    I. S. T. Tsong, Phys. Status Solidi (A) 7, 451 (1971).CrossRefGoogle Scholar
  6. 6.
    H. Kerkow, Phys. Status Solidi (A) 10, 501 (1972).CrossRefGoogle Scholar
  7. 7.
    J. M. Fluint, L. Friedman, J. Van Eck, C. Snoek, and J. Kistemaker, Proceedings of the Fifth International Conference on Ionization Phenomena in Gases, Munich, Germany. 1961 (H. Maecker, ed.) p. 131, North-Holland, Amsterdam (1962); I. Terzic and B. Perovic, Surface Sci. 21, 86 (1970).Google Scholar
  8. 8.
    C. Snoek, W. F. van der Weg, and P. K. Rol, Physica 30, 341 (1964).CrossRefGoogle Scholar
  9. 9.
    W. F. van der Weg and D. J. Bierman, Physica 44, 206 (1969).CrossRefGoogle Scholar
  10. 10.
    I. Terzic and B. Perovic, Surface Sci. 21, 86 (1970).CrossRefGoogle Scholar
  11. 11.
    H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Clarendon Press, Oxford (1952).Google Scholar
  12. 12.
    C. A. van de Runstraat, R. Wijnanendts van Resandt, and J. Los, J. Sci. Instr. 3, 575 (1970).CrossRefGoogle Scholar
  13. 13.
    H. D. Hagstrum, Phys. Rev. 123, 758 (1961); Phys. Rev. 96, 336 (1954).CrossRefGoogle Scholar
  14. 14.
    S. S. Shekhter, Zh. Eksp. Theor. Fiz. 7, 750 (1937).Google Scholar
  15. 15.
    A. Cobas and W. E. Lamb, Phys. Rev. 65, 327 (1944).CrossRefGoogle Scholar
  16. 16.
    W. F. van der Weg and D. J. Bierman, Physica 44, 206 (1969).CrossRefGoogle Scholar
  17. 17.
    R. Castaing and G. Slodzian, Compt. Rend. 255, 1893 (1962).Google Scholar
  18. 18.
    D. P. Smith, Surface Sci. 25, 171 (1971).CrossRefGoogle Scholar
  19. 19.
    V. V. Gritsyna, T. S. Kujan, A. G. Koval, and Ya. M. Fogel, Sov. Phvs.-JETP 31, 796 (1970).Google Scholar
  20. 20.
    G. M. McCracken and S. K. Erents, Physics Letters 31A, 429 (1970).CrossRefGoogle Scholar
  21. 21.
    C. Kerkdijk and E. W. Thomas, Physica 63, 577 (1973).CrossRefGoogle Scholar
  22. 22.
    D. R. Rao and H. N. Bose, Physica 52, 371 (1971).CrossRefGoogle Scholar
  23. 23.
    W. Hayes, D. L. Kirk, and G. P. Summers, Solid State Commun. 7, 1061 (1969).CrossRefGoogle Scholar
  24. 24.
    J. H. Beaumont, W. Hayes, D. L. Kirk, and G. P. Summers, Proc. Roy. Soc. (London) 315, 69 (1970).CrossRefGoogle Scholar
  25. 25.
    N. H. Tolk, C. W. White, and P. Sigmund, Bull. Am. Phys. Soc. 18, 686 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • C. W. White
    • 1
  • D. L. Simms
    • 1
  • N. H. Tolk
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations