Skip to main content

Electron Probe Microanalysis

  • Chapter
Characterization of Solid Surfaces

Abstract

Electron probe microanalysis is an analytical technique that may be used to determine the chemical composition of a solid specimen weighing as little as 10−11 gram and having a volume as small as one cubic micron. the primary advantage of electron probe microanalysis over other analytical methods is the possibility of obtaining a quantitative analysis of a specimen of very small size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.I. Goldstein, Electron probe analysis in metallurgy, in Electron Probe Microanalysis (A.J. Tousimis and L. Marton, eds.) pp. 245-290, Academic Press, New York (1969).

    Google Scholar 

  2. C. W. Mead, Electron probe microanalysis in mineralogy, in Electron Probe Microanalysis (A. J. Tousimis and L. Marton, eds.) pp. 227 244, Academic Press, New York (1969).

    Google Scholar 

  3. P. Duncumb. Recent advances in electron probe microanalysis, J. Phys. E 2. 553 560 (1969).

    Article  Google Scholar 

  4. D. R. Beaman and J. A. Isasi. Electron Beam Microanalysis. ASTM STP 506. American Society tor Testing and Materials, Philadelphia (1972).

    Google Scholar 

  5. E. W. White and G. G. Johnson, X-Ray Emission and Absorption Wavelengths and Two-Theta Tables, ASTM DS 37A, American Society for Testing and Materials, Philadelphia (1970).

    Google Scholar 

  6. G. G. Johnson and E. W. White, X-Ray Emission Wavelength and keV Tables for Nondiffractive Analysis, ASTM DS 46, American Society for Testing and Materials, Philadelphia (1970).

    Google Scholar 

  7. K. F. J. Heinrich, Instrumental developments for electron microprobe readout, in Advances in X-Ray Analysis (W. M. Mueller, G. Mallett, and M. Fay, eds.) Vol. 7, pp. 382–394, Plenum Press, New York (1964).

    Chapter  Google Scholar 

  8. K. F. J. Heinrich, Oscilloscope readout of electron microprobe data, in Advances in X-Ray Analysis (W. M. Mueller and M. Fay, eds.) Vol. 6, pp. 291–330, Plenum Press, New York (1963).

    Chapter  Google Scholar 

  9. K. F. J. Heinrich, Scanning Electron Probe Microanalysis, Technical Note 278, National Bureau of Standards, Washington (1967).

    Google Scholar 

  10. H. E. Bishop, Electron Scattering and X-Ray Production, Ph.D. Thesis, Univ. of Cambridge (1966).

    Google Scholar 

  11. H. E. Bishop, Some electron backscattering measurements for solid targets, in Optique des Rayons X et Microanalyse (R. Castaing, P. Deschamps, and J. Philibert, eds.) pp. 153–158, Hermann, Paris (1966).

    Google Scholar 

  12. K. F. J. Heinrich, Electron probe microanalysis by specimen current measurement, in Optique des Rayons X et Microanalyse (R. Castaing, P. Deschamps, and J. Philibert, eds.) pp. 159–167, Hermann, Paris (1966).

    Google Scholar 

  13. M. Green and V. E. Cosslett, Measurements of K, L, and M shell x-ray production efficiencies, J. Phys. D 1, 425–436 (1968).

    Article  Google Scholar 

  14. J. C. Clark, A measurement of the absolute probability of K-electron ionization of silver by cathode rays, Phys. Rev. 48, 30–42 (1935).

    Article  CAS  Google Scholar 

  15. C. R. Worthington and S. G. Tomlin, The intensity of emission of characteristic x-radiation, Proc. Phys. Soc. (London) 69, 401–412 (1956).

    Article  Google Scholar 

  16. D. L. Webster, W. W. Hansen, and F. B. Duveneck, Probabilities of K-electron ionization of silver by cathode rays, Phys. Rev. 43, 839–858 (1933).

    Article  CAS  Google Scholar 

  17. L. T. Pockman, D. L. Webster, P. Kirkpatrick, and K. Harworth, The probability of K-ionization of nickel by electrons as a function of their energy, Phys. Rev. 71, 330–338 (1947).

    Article  CAS  Google Scholar 

  18. R. W. Fink, R. C. Jopson, H. Mark, and C. D. Swift, Atomic fluorescence yields, Rev. Mod. Phys. 38, 513–540 (1966).

    Article  CAS  Google Scholar 

  19. D. B. Brown and R. E. Ogilvie, An electron transport model for the prediction of x-ray production and electron backscattering in electron microanalysis, J. Appl. Phys. 37, 4429–4433 (1966).

    Article  CAS  Google Scholar 

  20. D. B. Brown, D. B. Wittry, and D. F. Kyser, Prediction of x-ray production and electron scattering in electron probe analysis using a transport equation, J. Appl. Phys. 40, 1627–1636 (1969).

    Article  CAS  Google Scholar 

  21. H. E. Bishop, Electron scattering in thick targets, Brit. J. Appl. Phys. 18, 703–715 (1967).

    Article  CAS  Google Scholar 

  22. K. F. J. Heinrich, Errors in theoretical correction systems in quantitative electron probe microanalysis—A synopsis, Anal. Chem. 44, 350–354 (1972).

    Article  CAS  Google Scholar 

  23. D. R. Beaman and J. A. Isasi, A critical examination of computer programs used in quantitative electron microprobe analysis, Anal. Chem. 42, 1540–1568 (1970).

    Article  CAS  Google Scholar 

  24. J. Philibert and R. Tixier, Electron penetration and the atomic number correction in electron probe microanalysis, J. Phys. D 1, 685–694 (1968).

    Article  Google Scholar 

  25. P. Duncumb and S. J. B. Reed, The calculation of stopping power and backscatter effects in electron probe microanalysis, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.) Special Publication 298, pp. 133–154, National Bureau of Standards, Washington (1968).

    Google Scholar 

  26. K. F. J. Heinrich, X-ray absorption uncertainty, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.) pp. 296–377, John Wiley & Sons, New York (1966).

    Google Scholar 

  27. R. Castaing and J. Descamps, Sur les bases physiques de Tanalyse ponctuelle par spectrographie X, J. Phys. Rad. 16, 304–317 (1955).

    Article  CAS  Google Scholar 

  28. R. Castaing, Electron probe microanalysis, in Advances in Electronics and Electron Physics (L. Marton, ed.) Vol. 13, pp. 317–386, Academic Press, New York (1960).

    Google Scholar 

  29. J. Philibert, A method for calculating the absorption correction in electron probe microanalysis, in X-Ray Optics and X-Ray Microanalysis (H. H. Pattee, V. E. Cosslett, and A. Engstrom, eds.) pp. 379–392, Academic Press, New York (1963).

    Google Scholar 

  30. P. Duncumb and P. K. Shields, Effect of critical excitation potential on the absorption correction, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.) pp. 284–295, John Wiley & Sons, New York (1966).

    Google Scholar 

  31. K. F. J. Heinrich, The absorption correction model for microprobe analysis, Proceedings of the Second National Conference on Electron Probe Analysis, paper 7 (1967).

    Google Scholar 

  32. P. Duncumb, P. K. Shields-Mason, and C. daCasa, Accuracy of atomic number and absorption corrections in electron probe microanalysis, in Fifth International Congress on X-Ray Optics and Microanalysis (G. Möllenstedt and K. H. Gaukler, eds.) pp. 146–150, Springer-Verlag, Berlin (1969).

    Google Scholar 

  33. S. J. B. Reed, Characteristic fluorescence correction in electron probe microanalysis, Brit. J. Appl. Phys. 16, 913–926 (1965).

    Article  CAS  Google Scholar 

  34. J. Hénoc, Fluorescence excited by the continuum, in Quantitative Electron Probe Microanalysis (K. F. J. Heinrich, ed.) Special Publication 298, pp. 197–214, National Bureau of Standards, Washington (1968).

    Google Scholar 

  35. J. I. Goldstein and R. E. Ogilvie, A re-evaluation of the iron-rich portion of the Fe-Ni system, Trans. Met. Soc. AIME 233, 2083–2087 (1965).

    CAS  Google Scholar 

  36. A. E. Austin and N. A. Richard, Grain boundary diffusion, J. Appl. Phys. 32, 1462–1471 (1961).

    Article  CAS  Google Scholar 

  37. D. M. Koffman, Sc.D. Thesis, Massachusetts Institute of Technology (1964).

    Google Scholar 

  38. J. T. Armstrong, P. R. Busek, and E. F. Holdsworth, The effect of take-off angle on particle analysis with the electron microprobe, paper 36, Proceedings of the Seventh National Conference on Electron Probe Analysis (1972).

    Google Scholar 

  39. F. W. Perry, G. A. Hutchins, and L. E. Cross, Compositional inhomogeneity of (Ba, Pb) TiO3 crystals, Mater. Res. Bull. 2, 409–418 (1967).

    Article  CAS  Google Scholar 

  40. P. Duncumb and D. A. Melford, A simple correction procedure for ultra-soft x-ray microanalysis, paper 12, Proceedings of the First National Conference on Electron Probe Analysis (1966).

    Google Scholar 

  41. G. A. Hutchins, Thickness determination of thin films by electron probe microanalysis, in the Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.) pp. 390–404, John Wiley & Sons, New York (1966).

    Google Scholar 

  42. W. Reuter, The ionization function and its application to the electron probe analysis of thin films, paper 34, Proceedings of the Seventh National Conference on Electron Probe Analysis (1972).

    Google Scholar 

  43. W. Reuter, the ionization function and its application to the electron probe analysis of thin films, IBM Research Report RC 3590, IBM Watson Research Center, York-town Heights, New York (1971).

    Google Scholar 

  44. D. J. Marshall and T. A. Hall, Electron probe x-ray microanalysis of thin films, J. Phys. D 1, 1651–1656 (1968).

    Article  Google Scholar 

  45. R. Castaing and J. Hénoc, Repartition en profondeur du rayonnement caracteristique, in Optique des Rayons X et Microanalyse (R. Castaing, P. Deschamps, and J. Philibert, eds.) pp. 120–126, Hermann, Paris (1966).

    Google Scholar 

  46. A. Vignes and G. Dez, Distribution in depth of the primary x-ray emission in anticathodes of titanium and lead, J. Phys. D 1, 1309–1322 (1968).

    Article  Google Scholar 

  47. J. D. Brown, The sandwich sample technique applied to quantitative microprobe analysis, in Electron Probe Microanalysis (A. J. Tousimis and L. Marton, eds.) pp. 45–71, Academic Press, New York (1969).

    Google Scholar 

  48. J. D. Brown and L. Parobek, Comparison of ø(pz) curves measured on instruments of different geometries, paper 5, Proceedings of the Seventh National Conference on Electron Probe Analysis (1972).

    Google Scholar 

  49. V. E. Cosslett and R. N. Thomas, The plural scattering of 20 keV electrons, Brit. J. Appl. Phys. 15, 235–248 (1964).

    Article  CAS  Google Scholar 

  50. V. E. Cosslett and R. N. Thomas, Multiple scattering of 5–30 keV electrons in evaporated metal films I. Total transmission and angular distribution, Brit. J. Appl. Phys. 15, 883–907 (1964).

    Article  CAS  Google Scholar 

  51. V. E. Cosslett and R.N. Thomas, Multiple scattering of 5–30 keV electrons in evaporated metal films II. Range-energy relations, Brit. J. Appl. Phys. 15, 1283–1300 (1964).

    Article  CAS  Google Scholar 

  52. V. E. Cosslett and R. N. Thomas, Multiple scattering of 5–30 keV electrons in evaporated metal films III. Backscattering and absorption, Brit. J. Appl. Phys. 16, 779–796 (1965).

    Article  CAS  Google Scholar 

  53. W. L. Patterson and G. A. Shim, The sputtering of nickel-chromium alloys, J. Vac. Sci. Technol. 4, 343–346 (1967).

    Article  CAS  Google Scholar 

  54. G. H. Maher, Physical and Electrical Properties of Thin Film Barium Titanate Prepared by rf Sputtering on Silicon Substrates, Ph.D. Thesis, Rensselaer Polytechnic Institute (1971).

    Google Scholar 

  55. M. Green, Ph.D. Thesis, Cambridge University (1962).

    Google Scholar 

  56. K. F. J. Heinrich and H. Yakowitz, Propagation of errors in correction models for quantitative electron probe microanalysis, in Fifth International Congress on X-Ray Optics and Microanalysis (G. Möllenstedt and K. H. Gaukler, eds.), pp. 151–159, Springer-Verlag, Berlin (1969).

    Google Scholar 

  57. G. A. Hutchins, Electron probe microanalysis, in Techniques of Surface and Colloid Chemistry and Physics (R. J. Good, R. R. Stromberg, and R. L. Patrick, eds.). Vol. 2, Marcel Dekker, New York (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Hutchins, G.A. (1974). Electron Probe Microanalysis. In: Kane, P.F., Larrabee, G.B. (eds) Characterization of Solid Surfaces. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4490-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4490-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4492-6

  • Online ISBN: 978-1-4613-4490-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics