Skip to main content

Accelerator Microbeam Techniques

  • Chapter

Abstract

The analytical potential of nuclear interactions induced by accelerated charged particles was demonstrated during the earliest investigations into nuclear structure, when yields of some emitted radiations were interpreted in terms of the number of nuclei available for interaction in the target material. Subsequently, shortly after Hevesy(1) demonstrated that neutron irradiation could provide the basis of analytical measurement, Seaborg and Livingood(2) measured the gallium content of iron after irradiation with accelerated deuterons. Analytical techniques based upon charged-particle irradiation were initially overshadowed by methods exploiting neutron irradiation, since simple, sensitive neutron-activation procedures were available and the nuclear reactor offered an intense radiation source capable of irradiating many samples simultaneously. Application of charged-particle techniques was thus largely restricted to the determination of those elements which could not be conveniently measured after neutron activation. These were mainly light elements since (1) high specific activity could be induced in light elements by charged-particle bombardment, and (2) small quantities of characteristic activity from the element to be determined could be isolated by chemistry from large quantities of other activities induced in the sample, for example from a major constituent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Hevesy and H. Levi, Det. Kgl. Dansk. Viden. Selsk. Math.-Fys. Medd. 14, 3 (1936).

    Google Scholar 

  2. G. T. Seaborg and J. J. Livingood, J. Am. Chem. Soc. 60, 1784 (1938).

    Article  CAS  Google Scholar 

  3. D. M. Holm, W. M. Sanders, W. L. Briscoe, and J. L. Parker, in Nucleonics in Aerospace (P. Polishuk, ed.) p. 306, Plenum Press, New York (1968).

    Google Scholar 

  4. T. B. Pierce, Proc. Soc. Anal. Chem. 7, 59 (1970).

    CAS  Google Scholar 

  5. Y. A. Dzemard’Yan, G. I Mikhailov, and L. P. Starehik, Ind. Lab. 37, 708 (1971).

    Google Scholar 

  6. R. F. Sippel and E. D. Glover, Nucl. Instr. Meth. 9, 37 (1960).

    Article  CAS  Google Scholar 

  7. T. B. Pierce, P. F Peck, and W. M. Henry, Analyst 90, 339 (1965).

    Article  CAS  Google Scholar 

  8. T. B. Pierce, P. F. Peck, and W. M Henry, Nature 204, 571 (1964).

    Article  CAS  Google Scholar 

  9. D. J. Macey and W. B. Gilboy, Nucl. Instr. Meth. 92, 501 (1971).

    Article  CAS  Google Scholar 

  10. E. Ricci (private communication).

    Google Scholar 

  11. V. F. Zelenskii, O. N. Khar’Kov, V. S. Kulakov, and N. A. Skakum, Protect. Met. 6, 235 (1970).

    Google Scholar 

  12. E. Moller and N. Starfelt, Aktiebelaget Atomenergi, Sweden, 237 (1966).

    Google Scholar 

  13. G. M. Padawer, Nuclear Appl. Technol. 9, 856 (1970).

    CAS  Google Scholar 

  14. W. D. Mackintosh, Nuclear Technology 13 (1972), 65.

    Google Scholar 

  15. M. Peisach, J. Radioanal. Chem. 12, 257 (1972).

    Article  Google Scholar 

  16. T. B. Pierce, in Proceedings of the 2nd Conference on Practical Aspects of Activation Analysis with Charged Particles, Liege, 1967 (H. G. Enert, ed.) Report EUR3896, d-f-e, p. 389, Brussels (1968).

    Google Scholar 

  17. G. Deconninck and G. Demortier, in Colloquium on the Application of Nuclear Methods in the Basic Metal Industries, Helsinki. 1972, I.A.E.A., Vienna (1973).

    Google Scholar 

  18. T. B. Pierce, P. F. Peck, and D. R. A. Cuff, Anal. Chim. Acta 39, 433 (1967).

    Article  CAS  Google Scholar 

  19. R. Pretorius and P. Coetzee, J. Radioanal. Chem. 12, 301 (1972).

    Article  CAS  Google Scholar 

  20. J. F. Chemin, J. Rotuner, B. Saboya, and G. Y. Petit, J. Radioanal. Chem. 12, 221 (1972).

    Article  CAS  Google Scholar 

  21. C. Olivier and M. Peisach, J. Radioanal. Chem. 12, 313 (1972).

    Article  CAS  Google Scholar 

  22. G. Amsel, J. P. Nadai, E. D’Artemare, D. David, E. Girard, and J. Moulin, Nucl. Inst. Meth. 92, 481 (1971).

    Article  CAS  Google Scholar 

  23. G. Weber and L. Quaglia, J. Radioanal. Chem. 12, 323 (1972).

    Article  CAS  Google Scholar 

  24. M. Cuypers, L. Quaglia, G. Robaye, P. Dumont, and J. N. Barrandon, in Proceedings of the 2nd Conference on Practical Aspects of Activation Analysis with Charged Particles, Liege. 1967 (H. G. Ebert, ed.) Report EUR3896 d-f-e, p. 371, Brussels (1968).

    Google Scholar 

  25. E. A. Wolicki and A. R. Knudson, Int. J. Appl. Rad. Isotop. 18, 429 (1967).

    Article  CAS  Google Scholar 

  26. E. Moller, L. Nilsson, and N. Starfelt, Nucl. Inst. Meth. 50, 270 (1967).

    Article  CAS  Google Scholar 

  27. T. B. Pierce, P. F. Peck, and D. R. A. Cuff, Analyst 97, 171 (1972).

    Article  CAS  Google Scholar 

  28. J. Chadwick, Phil. Mag. 24, 594 (1912).

    Google Scholar 

  29. P. B. Needham and B. D. Sartwell, in Advances in X-ray Analysis (C. S. Barret, J. B. Newkirk and C. D. Rund, eds.) Vol. 14, p. 184, Plenum Press, New York (1971).

    Google Scholar 

  30. D. M. Poole and J. L. Shaw, U.K. Atomic Energy Authority Report AERE-R 5918 (1968).

    Google Scholar 

  31. G. A. Bissinger, J. M. Joyce, E. J. Ludwig, W. S. McEver, and S. M. Shafroth, Phys. Rev. A1, 841 (1970).

    Google Scholar 

  32. T. B. Johansson, R. Akselsson, and S. A. E. Johansson, Nucl. Inst. Meth. 84, 141 (1970).

    Article  CAS  Google Scholar 

  33. T. B. Pierce, P. F. Peck, and D. R. A. Cuff, Nucl. Instrum. Meth. 67, 1 (1968).

    Article  Google Scholar 

  34. J. A. Cookson and F. D. Pilling, U.K. Atomic Energy Authority Report AERE-R-6300 (1970).

    Google Scholar 

  35. A. D. Dymnikov, T. Fishkova, and S. Yavor, Sov. Phys. Tech. Plus. 10, 340 (1965).

    Google Scholar 

  36. P. B. Price and J. R. Bird, Nucl. Instr. Meth. 69, 277 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Pierce, T.B. (1974). Accelerator Microbeam Techniques. In: Kane, P.F., Larrabee, G.B. (eds) Characterization of Solid Surfaces. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4490-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4490-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4492-6

  • Online ISBN: 978-1-4613-4490-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics