Contractility of Muscle Cells and Non-Muscular Contractile Cells

  • Earl M. Ettienne
Part of the Advances in Behavioral Biology book series (ABBI, volume 13)

Abstract

To fully understand the roots of our current concern over the application of biological techniques to behavior, one needs to consider the pioneering work of Darwin, Pavlov and Mendel. The works of each of these men provided radical insights into comparative aspects of behavior in different species; physiological responses to behavioral conditioning and a methodology for understanding the hereditary basis for behavioral traits in living organisms.

Keywords

Magnesium Dopamine Rubber Respiration Adenosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, M.R. and Taylor, E. 1969a. Isolation of an actomyosin-like protein complex from slime mold plasmodium and the separation of the complex into actin and myosin-like fractions. Biochem., 8, 4964.CrossRefGoogle Scholar
  2. Adelman, M.R. and Taylor, E. 1969b. Further purification and characterization of slime mold myosin and slime mold actin. Biochem., 8, 4976.CrossRefGoogle Scholar
  3. Allen, R.D. 1973. Structures linking the myoneme, endoplasmic reticulum and surface membranes in the contractile ciliate Vorticella. J. Cell. Biol., 56, 559–579.CrossRefGoogle Scholar
  4. Bannister, L.H. and Tatchell, E.C. 1968. Contractility and the fibre systems of Stentor Coeruleus. J. Cell. Sci., 3. 295.Google Scholar
  5. Costantin, L.L., Franzini-Armstrong, C. and Podolsky, R.J. 1965. Localization of calcium-accumulating structures in striated muscle fibers. Science, 147, 158.CrossRefGoogle Scholar
  6. Daniel, J.W. and Jarlfors, V. 1972. Light-induced changes in the ultrastructure of a plasmodial myxomycete. Tissue & Cell, 4 (3), 405–426.CrossRefGoogle Scholar
  7. Dragesco, J. 1962. On the biology of sand-dwelling ciliates. Sci. Prog. (London), 50, 353–363.Google Scholar
  8. Ebashi, S. 1961. Calcium binding activity of vesicular relaxing factor, J. Biochem. Tokyo, 50, 236.Google Scholar
  9. Eisenberg, R.S. 1971. The equivalent circuit of frog skeletal muscle fibers. In Contractitlty of Muscle Cells and Related Processes, pp. 69–88.Google Scholar
  10. Eisenberg, R.S. and Gage, P.W. 1969. Ionic conductances of the surface and transverse tubular membranes of frog fibers. J. Gen. Physiol., 53, 279.CrossRefGoogle Scholar
  11. Endo, M., Nomomura, J., Mosaki, T., Ohtusuki, I. and Ebashi, S. 1966. Localization of native tropomyosin in relation to striation patterns. J. Biochem., 60, 605.Google Scholar
  12. Ettienne, E.M. 1970. Calcium Regulation of Contraction in non-muscular contractile systems. Doctoral Thesis, S.U.N.Y., Albany.Google Scholar
  13. Ettienne, E.M. 1970. Control of Contractility of Spirostomum by dissociated calcium ion. J. Gen. Phys., 56, 168.CrossRefGoogle Scholar
  14. Ettienne, E.M. 1972. Subcellular localization of calcium repositories in plasmodia of the acellular slime mold, Physarum polycephalum. J. Cell. Biol., 54, 179–184.CrossRefGoogle Scholar
  15. Ettienne, E.M. and Selitsky, M. 1974. The antagonistic effects of antimitotic agents on contraction and relaxation in Spirostomum Ambiguum. J. Cell Science, Nov. (In Press).Google Scholar
  16. Grain, J. 1968. Les systemes fibrillaires Chez Stentor igneus Ehrenberg et Spirostomum Ambiguum Ehrenberg. Protistologica, 4, 27.Google Scholar
  17. Hasselbach, W. and Makinose, M. 1961. Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre abhangigkeit von der ATP spaltung. Biochem. Z., 333, 518.Google Scholar
  18. Hastings, J.W., Mitchell, G., Mattingly, P., Blinks, J. and Van Lecuwen, M. 1969. Response of aequorin luminescence to rapid changes in calcium concentration. Nature (London), 222, 1047.CrossRefGoogle Scholar
  19. Hatano, S. and Oozawa, F. 1966a. Extraction of actin-like protein from the Plasmodium of a myxomycete and its interaction with myosin A from rabbit striated muscle. J. Cell. Physiol., 68, 197.CrossRefGoogle Scholar
  20. Hatano, S. and Oozawa, F. 1966b. Isolation and characterization of plasmodium actin. Biochem. Biophys. Acta., 127, 488.CrossRefGoogle Scholar
  21. Hatano, S. and Tazawa. 1968. Isolation, purification and characterization of myosin B from myxomycete plasmodium. Biochem. Biophys. Acta., 154, 507.Google Scholar
  22. Huang, B. and Pitelka, D.R. 1971. The Contractile Process in the Ciliate Stentor Coeruleus, I. Functional role of Microtubules and Microfilaments. Doctoral Dissertation, U.C., Berkeley.Google Scholar
  23. Huxley, H.E. 1964. Evidence for continuity between the central elements of the triad and extracellular space in frog sartorius muscle. Nature, 202, 1067.CrossRefGoogle Scholar
  24. Huxley, A.F. and Taylor, R.E. 1958. Local activation of striated muscle fibres. J. Physiol. (London), 144, 426.Google Scholar
  25. Jones, A.R., Jahn, T.L. and Fonseca, J. 1966. Contraction of protoplasm. I. Cinematographic analysis of the anodally stimulated contraction of Spirostomum Ambiguum. J. Cell. Phys., 68, 127–134.CrossRefGoogle Scholar
  26. Jones, A.R., Jahn, T.L. and Fonseca, J. 1970. Contraction of protoplasm. IV. Cinematographic analysis of the contraction of some peritrichs. J. Cell Physiol., 75, 9–20.CrossRefGoogle Scholar
  27. Kamiya, N. and Abe, S. 1950. Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow. J. Colloid. Sci., 5, 149.CrossRefGoogle Scholar
  28. Kandel, Eric. 1970. Nerve cells and behavior. Sci. Amer., pp. 57–70.Google Scholar
  29. Lehman, W.J. and Rebhum, L.J. 1971. The structural elements responsible for contraction in the ciliate Spirostomum. Protoplasma, 72, 153.CrossRefGoogle Scholar
  30. Maran, M., Himmelstein, R. and Dikstein, S. 1972. Vorticella — a model for chemopharmacodynamic action on smooth muscle. Comp. Gen. Pharm. 3 (11), 363–370.CrossRefGoogle Scholar
  31. Maruyama, K. and Gergely, J. 1962. Interaction of actomyosin with adenosine triphosphate at low ionic strength. II factors influencing clearing and superprecipitation: adenosine triphosphatase and birefringence of flow studies. J. Biol. Chem., 237, 1100.Google Scholar
  32. McIntosh, J.R. 1971. Microtubule contraction and sliding associated with cellular motility. Abst. 11th Ann. Meet. Amer. Soc. Cell. Biol.Google Scholar
  33. Newman, E. 1972. Contraction in Stentor coeruleus: a cinematic analysis. Science, 177, 447.CrossRefGoogle Scholar
  34. Niedergerke, R. 1955. Local muscular shortening by intracellularly applied calcium. J. Physiol. (London), 128, 12.Google Scholar
  35. Pautard, F.G. 1960. Calcification in unicellular organisms. In Calcification in Biological Systems, R.F. Sognnaes (Ed.), AMS Washington.Google Scholar
  36. Peachey, L.D. 1965. The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J. Cell. Biol., 25, 209.CrossRefGoogle Scholar
  37. Pepe, F.A. 1966. Some aspects of the structural organization of the myofibril as revealed by antibody-staining methods. J. Cell. Biol., 28, 505.CrossRefGoogle Scholar
  38. Pitelka, D.R. 1969. Fibrillar systems in protozoa. In Research in Protozoology, 3, 280, T.T. Chen (Ed.), Pergamon Press, Oxford and N.Y.Google Scholar
  39. Podolsky, R.J. 1971. Contractility of Muscle Cells and Related Processes, Prentice Hall (New Jersey).Google Scholar
  40. Pollard, T. and Ito, S. 1970. Cytoplasmic filaments of amoeba proteus. I. Role of filaments in consistency changes and movement. J. Cell. Biol., 46, 267.CrossRefGoogle Scholar
  41. Pollard, T., Shelton, E., Witting, R. and Kora, E.D. 1970. Ultrastructural characterization of F-actin isolated from Acanthamoeba castellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy meromyosin. J. Mol. Biol., 50, 91.CrossRefGoogle Scholar
  42. Randall, J.T. and Hopkins, J.M. 1962. On the stalks of certain peritrichs. Phil. Trans. Roy. Soc. (London) B, 245, 59.CrossRefGoogle Scholar
  43. Randall, J.T. and Jackson, S.F. 1958. Fine structure and function in Stentor polymorphus. J. Biophys. Biochem. Cytol., 4, 807.CrossRefGoogle Scholar
  44. Rhea, P.R. 1966. Electron microscopic observation on the slime mold, Physarum polycephalum with specific reference to fibrillar structures. J. Ultrastruct. Res., 15, 349.CrossRefGoogle Scholar
  45. Shimomura, O., Johnson, F. and Saiga, J. 1962. Extraction purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusa, Aequorea. Cell. Comp. Physiol., 59, 223.CrossRefGoogle Scholar
  46. Shimomura, O., Johnson, F. and Saiga, Y. 1963a. Microdetermination of calcium by aequorin luminescence. Science, 140, 1339.CrossRefGoogle Scholar
  47. Tauc, L. 1953. Quelques observations de bioélectricite cellulaire, en particulier chez un myxomycete. (Physarum polycephalum). J. Cell. Biol., 54, 179–184.Google Scholar
  48. Tawada, K. and Oozawa, F. 1969. Activation of H-meromyosin ATPase by polymers of actin and carboxymethylated actin. Mol. Biol., 44, 309.CrossRefGoogle Scholar
  49. Weber, A. and Bremel, R. 1971. Regulation of Contraction and Relaxation in the myofibril. In Contractility of Muscle Cells and Related Processes, R.J. Podolsky (Ed.), Prentice Hall, pp. 37–53.Google Scholar
  50. Weber, A. and Winicur, S. 1961. The role of calcium in the super-precipitation of actomyosin. J. Biol. Chem., 236, 3198.Google Scholar
  51. Weis-Fogh, T. and Amos, W.B. 1972. Evidence for a new mechanism of cell motility. Nature, 236, 301–304.CrossRefGoogle Scholar
  52. Wohlfarth-Bottermann, K.E. 1964. Differentiations of the ground cytoplasm and their significance for the generation of the motive force of amoeboid movement. In Primitive Matile Systems in Cell Biology, R.D. Allen and N. Kamiya (Eds.), Academic Press, New York, p. 79.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Earl M. Ettienne
    • 1
  1. 1.Department of AnatomyHarvard Medical SchoolBostonUSA

Personalised recommendations