Skip to main content

Contractility of Muscle Cells and Non-Muscular Contractile Cells

  • Chapter

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 13))

Abstract

To fully understand the roots of our current concern over the application of biological techniques to behavior, one needs to consider the pioneering work of Darwin, Pavlov and Mendel. The works of each of these men provided radical insights into comparative aspects of behavior in different species; physiological responses to behavioral conditioning and a methodology for understanding the hereditary basis for behavioral traits in living organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adleman, M.R. and Taylor, E. 1969a. Isolation of an actomyosin-like protein complex from slime mold plasmodium and the separation of the complex into actin and myosin-like fractions. Biochem., 8, 4964.

    Article  Google Scholar 

  • Adelman, M.R. and Taylor, E. 1969b. Further purification and characterization of slime mold myosin and slime mold actin. Biochem., 8, 4976.

    Article  Google Scholar 

  • Allen, R.D. 1973. Structures linking the myoneme, endoplasmic reticulum and surface membranes in the contractile ciliate Vorticella. J. Cell. Biol., 56, 559–579.

    Article  Google Scholar 

  • Bannister, L.H. and Tatchell, E.C. 1968. Contractility and the fibre systems of Stentor Coeruleus. J. Cell. Sci., 3. 295.

    Google Scholar 

  • Costantin, L.L., Franzini-Armstrong, C. and Podolsky, R.J. 1965. Localization of calcium-accumulating structures in striated muscle fibers. Science, 147, 158.

    Article  Google Scholar 

  • Daniel, J.W. and Jarlfors, V. 1972. Light-induced changes in the ultrastructure of a plasmodial myxomycete. Tissue & Cell, 4 (3), 405–426.

    Article  Google Scholar 

  • Dragesco, J. 1962. On the biology of sand-dwelling ciliates. Sci. Prog. (London), 50, 353–363.

    Google Scholar 

  • Ebashi, S. 1961. Calcium binding activity of vesicular relaxing factor, J. Biochem. Tokyo, 50, 236.

    Google Scholar 

  • Eisenberg, R.S. 1971. The equivalent circuit of frog skeletal muscle fibers. In Contractitlty of Muscle Cells and Related Processes, pp. 69–88.

    Google Scholar 

  • Eisenberg, R.S. and Gage, P.W. 1969. Ionic conductances of the surface and transverse tubular membranes of frog fibers. J. Gen. Physiol., 53, 279.

    Article  Google Scholar 

  • Endo, M., Nomomura, J., Mosaki, T., Ohtusuki, I. and Ebashi, S. 1966. Localization of native tropomyosin in relation to striation patterns. J. Biochem., 60, 605.

    Google Scholar 

  • Ettienne, E.M. 1970. Calcium Regulation of Contraction in non-muscular contractile systems. Doctoral Thesis, S.U.N.Y., Albany.

    Google Scholar 

  • Ettienne, E.M. 1970. Control of Contractility of Spirostomum by dissociated calcium ion. J. Gen. Phys., 56, 168.

    Article  Google Scholar 

  • Ettienne, E.M. 1972. Subcellular localization of calcium repositories in plasmodia of the acellular slime mold, Physarum polycephalum. J. Cell. Biol., 54, 179–184.

    Article  Google Scholar 

  • Ettienne, E.M. and Selitsky, M. 1974. The antagonistic effects of antimitotic agents on contraction and relaxation in Spirostomum Ambiguum. J. Cell Science, Nov. (In Press).

    Google Scholar 

  • Grain, J. 1968. Les systemes fibrillaires Chez Stentor igneus Ehrenberg et Spirostomum Ambiguum Ehrenberg. Protistologica, 4, 27.

    Google Scholar 

  • Hasselbach, W. and Makinose, M. 1961. Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre abhangigkeit von der ATP spaltung. Biochem. Z., 333, 518.

    Google Scholar 

  • Hastings, J.W., Mitchell, G., Mattingly, P., Blinks, J. and Van Lecuwen, M. 1969. Response of aequorin luminescence to rapid changes in calcium concentration. Nature (London), 222, 1047.

    Article  Google Scholar 

  • Hatano, S. and Oozawa, F. 1966a. Extraction of actin-like protein from the Plasmodium of a myxomycete and its interaction with myosin A from rabbit striated muscle. J. Cell. Physiol., 68, 197.

    Article  Google Scholar 

  • Hatano, S. and Oozawa, F. 1966b. Isolation and characterization of plasmodium actin. Biochem. Biophys. Acta., 127, 488.

    Article  Google Scholar 

  • Hatano, S. and Tazawa. 1968. Isolation, purification and characterization of myosin B from myxomycete plasmodium. Biochem. Biophys. Acta., 154, 507.

    Google Scholar 

  • Huang, B. and Pitelka, D.R. 1971. The Contractile Process in the Ciliate Stentor Coeruleus, I. Functional role of Microtubules and Microfilaments. Doctoral Dissertation, U.C., Berkeley.

    Google Scholar 

  • Huxley, H.E. 1964. Evidence for continuity between the central elements of the triad and extracellular space in frog sartorius muscle. Nature, 202, 1067.

    Article  Google Scholar 

  • Huxley, A.F. and Taylor, R.E. 1958. Local activation of striated muscle fibres. J. Physiol. (London), 144, 426.

    Google Scholar 

  • Jones, A.R., Jahn, T.L. and Fonseca, J. 1966. Contraction of protoplasm. I. Cinematographic analysis of the anodally stimulated contraction of Spirostomum Ambiguum. J. Cell. Phys., 68, 127–134.

    Article  Google Scholar 

  • Jones, A.R., Jahn, T.L. and Fonseca, J. 1970. Contraction of protoplasm. IV. Cinematographic analysis of the contraction of some peritrichs. J. Cell Physiol., 75, 9–20.

    Article  Google Scholar 

  • Kamiya, N. and Abe, S. 1950. Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow. J. Colloid. Sci., 5, 149.

    Article  Google Scholar 

  • Kandel, Eric. 1970. Nerve cells and behavior. Sci. Amer., pp. 57–70.

    Google Scholar 

  • Lehman, W.J. and Rebhum, L.J. 1971. The structural elements responsible for contraction in the ciliate Spirostomum. Protoplasma, 72, 153.

    Article  Google Scholar 

  • Maran, M., Himmelstein, R. and Dikstein, S. 1972. Vorticella — a model for chemopharmacodynamic action on smooth muscle. Comp. Gen. Pharm. 3 (11), 363–370.

    Article  Google Scholar 

  • Maruyama, K. and Gergely, J. 1962. Interaction of actomyosin with adenosine triphosphate at low ionic strength. II factors influencing clearing and superprecipitation: adenosine triphosphatase and birefringence of flow studies. J. Biol. Chem., 237, 1100.

    Google Scholar 

  • McIntosh, J.R. 1971. Microtubule contraction and sliding associated with cellular motility. Abst. 11th Ann. Meet. Amer. Soc. Cell. Biol.

    Google Scholar 

  • Newman, E. 1972. Contraction in Stentor coeruleus: a cinematic analysis. Science, 177, 447.

    Article  Google Scholar 

  • Niedergerke, R. 1955. Local muscular shortening by intracellularly applied calcium. J. Physiol. (London), 128, 12.

    Google Scholar 

  • Pautard, F.G. 1960. Calcification in unicellular organisms. In Calcification in Biological Systems, R.F. Sognnaes (Ed.), AMS Washington.

    Google Scholar 

  • Peachey, L.D. 1965. The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J. Cell. Biol., 25, 209.

    Article  Google Scholar 

  • Pepe, F.A. 1966. Some aspects of the structural organization of the myofibril as revealed by antibody-staining methods. J. Cell. Biol., 28, 505.

    Article  Google Scholar 

  • Pitelka, D.R. 1969. Fibrillar systems in protozoa. In Research in Protozoology, 3, 280, T.T. Chen (Ed.), Pergamon Press, Oxford and N.Y.

    Google Scholar 

  • Podolsky, R.J. 1971. Contractility of Muscle Cells and Related Processes, Prentice Hall (New Jersey).

    Google Scholar 

  • Pollard, T. and Ito, S. 1970. Cytoplasmic filaments of amoeba proteus. I. Role of filaments in consistency changes and movement. J. Cell. Biol., 46, 267.

    Article  Google Scholar 

  • Pollard, T., Shelton, E., Witting, R. and Kora, E.D. 1970. Ultrastructural characterization of F-actin isolated from Acanthamoeba castellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy meromyosin. J. Mol. Biol., 50, 91.

    Article  Google Scholar 

  • Randall, J.T. and Hopkins, J.M. 1962. On the stalks of certain peritrichs. Phil. Trans. Roy. Soc. (London) B, 245, 59.

    Article  Google Scholar 

  • Randall, J.T. and Jackson, S.F. 1958. Fine structure and function in Stentor polymorphus. J. Biophys. Biochem. Cytol., 4, 807.

    Article  Google Scholar 

  • Rhea, P.R. 1966. Electron microscopic observation on the slime mold, Physarum polycephalum with specific reference to fibrillar structures. J. Ultrastruct. Res., 15, 349.

    Article  Google Scholar 

  • Shimomura, O., Johnson, F. and Saiga, J. 1962. Extraction purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusa, Aequorea. Cell. Comp. Physiol., 59, 223.

    Article  Google Scholar 

  • Shimomura, O., Johnson, F. and Saiga, Y. 1963a. Microdetermination of calcium by aequorin luminescence. Science, 140, 1339.

    Article  Google Scholar 

  • Tauc, L. 1953. Quelques observations de bioélectricite cellulaire, en particulier chez un myxomycete. (Physarum polycephalum). J. Cell. Biol., 54, 179–184.

    Google Scholar 

  • Tawada, K. and Oozawa, F. 1969. Activation of H-meromyosin ATPase by polymers of actin and carboxymethylated actin. Mol. Biol., 44, 309.

    Article  Google Scholar 

  • Weber, A. and Bremel, R. 1971. Regulation of Contraction and Relaxation in the myofibril. In Contractility of Muscle Cells and Related Processes, R.J. Podolsky (Ed.), Prentice Hall, pp. 37–53.

    Google Scholar 

  • Weber, A. and Winicur, S. 1961. The role of calcium in the super-precipitation of actomyosin. J. Biol. Chem., 236, 3198.

    Google Scholar 

  • Weis-Fogh, T. and Amos, W.B. 1972. Evidence for a new mechanism of cell motility. Nature, 236, 301–304.

    Article  Google Scholar 

  • Wohlfarth-Bottermann, K.E. 1964. Differentiations of the ground cytoplasm and their significance for the generation of the motive force of amoeboid movement. In Primitive Matile Systems in Cell Biology, R.D. Allen and N. Kamiya (Eds.), Academic Press, New York, p. 79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Ettienne, E.M. (1975). Contractility of Muscle Cells and Non-Muscular Contractile Cells. In: Eisenstein, E.M. (eds) Aneural Organisms in Neurobiology. Advances in Behavioral Biology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4473-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4473-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4475-9

  • Online ISBN: 978-1-4613-4473-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics