Skip to main content

Genetic Dissection — An Approach to Neurobiology

  • Chapter
Book cover Aneural Organisms in Neurobiology

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 13))

  • 44 Accesses

Abstract

This chapter serves two purposes: First, to show how genetics can be used as a tool in neurobiological research and, secondly, to argue that bacteria and protozoa can be used as model systems for such an interdisciplinary approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J. 1969. Chemoreceptors in bacteria. Science, 166, 1588–1597.

    Article  Google Scholar 

  • Adler, J., Hazelbauer, G.L. and Dahl, M.M. 1973. Chemotaxis toward sugars in Escherichia coli. J. Bact., 115, 824–847.

    Google Scholar 

  • Armstrong, J.B. and Adler, J. 1967. Genetics of motility in Escherichia coli: complementations of paralyzed mutants. Genetics, 56, 363–373.

    Google Scholar 

  • Armstrong, J.B. and Adler, J. 1969. Complementation of nonchemotactic mutants of Escherichia coli. Genetics, 61, 61–66.

    Google Scholar 

  • Armstrong, J.B., Adler, J. and Dahl, M.M. 1967. Nonchemotactic mutants of Escherichia coli. J. Bact., 93, 390–398.

    Google Scholar 

  • Benzer, S. 1967. Behavioral mutants of Drosophila isolated by counter-current distribution. Proc. Natl. Acad. Sci. U S., 58 1112–1119.

    Article  Google Scholar 

  • Brenner, S. 1973. The genetics of behavior. Brit. Med. Bull., 29, 269–311.

    Google Scholar 

  • Chang, S.Y. and Kung, C. 1973a. Temperature sensitive Pawns: heat-sensitive behavioral mutants of Paramecium aurelia. Science, 180, 1197–1199.

    Article  Google Scholar 

  • Chang, S.Y. and Kung, C. 1973b. Genetic analyses of heat sensitive pawn mutants of Paramecium aurelia. Genetics, 75, 49–59.

    Google Scholar 

  • Eckert, R. 1972. Bioelectric control of ciliary activity. Science, 176, 473–481.

    Article  Google Scholar 

  • Eckert, R., Naitoh, Y. and Friedman, K. 1972. Sensory mechanisms in Paramecium I. Two components of the electric response to mechanical stimulation of the anterior surface. J. Exp. Biol., 56, 683–694.

    Google Scholar 

  • Hazelbauer, G.L. and Adler, J. 1971. Role of galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nature New Biology, 230, 101–104.

    Google Scholar 

  • Jennings, H.S. 1906. Behavior of the lower organisms. Columbia University Press, New York.

    Book  Google Scholar 

  • Kamada, T. 1934. Some observations on potential differences across the ectoplasm membrane of Paramecium. J. Exp. Biol., 11, 94–102.

    Google Scholar 

  • Kinosita, H., Dryl, S. and Naitoh, Y. 1964a. Changes in membrane potential and the responses to stimuli in Paramecium. J. Fac. Sci., Univ. Tokyo, Sect., IV, 10, 291–301.

    Google Scholar 

  • Kinosita, H., Dryl, S. and Naitoh, Y. 1964b. Relation between the magnitude of membrane potential and ciliary activity in Paramecium. J. Fac. Sci., Univ. Tokyo, Sect. IV, 10, 303–309.

    Google Scholar 

  • Kinosita, H. and Murakami, A. 1965. Control of ciliary motion. Physiol. Rev., 47, 53–82.

    Google Scholar 

  • Kung, C. 1971a. Genie mutants with altered system of excitation in Paramecium aurelia I. Phenotypes of the behavioral mutants. Z. vergl. Physiologie, 71, 142–164.

    Google Scholar 

  • Kung, C. 1971b. Genie mutants with altered system of excitation in Paramecium aurelia II. Mutagenesis, Screening and Genetic analysis of the mutants. Genetics, 69, 29–45.

    Google Scholar 

  • Kung, C. 1974. Genetic dissection of the excitable membrane of Paramecium. Genetics suppl. (in press).

    Google Scholar 

  • Kung, C., Chang, S.Y., Satow, Y., Vanhouten, J. and Hansma, H. 1974. Science (in preparation).

    Google Scholar 

  • Kung, C. and Eckert, R. 1972. Genetic modification of electric properties in an excitable membrane. Proc. Natl. Acad. Sci., 69, 93–97.

    Article  Google Scholar 

  • Kung, C. and Naitoh, Y. 1973. Calcium-induced ciliary reversal in the extracted models of “Pawns” a behavioral mutant of Paramecium. Science, 179, 195–196.

    Article  Google Scholar 

  • MacNab, R.M. and Koshland, D.E., Jr. 1972. The gradient-sensing mechanism in bacterial Chemotaxis. Proc. Natl. Acad. Sci., 69, 2509–2512.

    Article  Google Scholar 

  • Mesibov, R. and Adler, J. 1972. Chemotaxis toward amino-acids in Escherichia coli. J. Bact., 112, 315–326.

    Google Scholar 

  • Naitoh, Y. and Eckert, R. 1968a. Electrical properties of Paramecium caudatum. Modification by bound and free cations. Z. vergl. Physiol., 61, 427–462.

    Article  Google Scholar 

  • Naitoh, Y. and Eckert, R. 1968b. Electrical properties of Paramecium caudatum: All-or-none electro genesis. Z. vergl. Physiol., 61 453–472.

    Google Scholar 

  • Naitoh, Y. and Eckert, R. 1969a. Ionic mechanism controlling behavioral responses of Paramecium to mechanical stimulation. Science, 164, 963–965.

    Article  Google Scholar 

  • Naitoh, Y. and Eckert, R. 1969b. Ciliary orientation: controlled by cell membrane or by intercellular fibrils. Science, 166, 1633–1635.

    Article  Google Scholar 

  • Okajima, A. and Kinosita, H. 1966. Ciliary activity and coordination in Euplotes eurystomus I. Effect of microdissection of neuromotor fibres. Comp. Biochem. Physiol., 19, 115–131.

    Article  Google Scholar 

  • Satow, Y., Chang, S.Y. and Kung, C. 1974. Membrane excitability: made temperature dependent by mutations. Proc. Natl. Acad. Sci. U.S. (in press).

    Google Scholar 

  • Satow, Y. and Kung, C. 1974. Genetic dissection of active electro-genesis in Paramecium aurelia. Nature, 247, 69–71.

    Article  Google Scholar 

  • Sonneborn, T.M. 1970. Methods in Paramecium research. In: Methods of Cell Physiology. Vol. 4. D.M. Prescott (Ed.), Academic Press, New York.

    Google Scholar 

  • Taylor, C.V. 1920. Demonstration of the function of the neuromotor apparatus in Euplotes by the method of micro dissection. Univ. Calif. Pubis. Zool., 19, 403–471.

    Google Scholar 

  • Tso, W.W. and Adler, J. 1974. Negative Chemotaxis in Escherichia coli. J. Bact., 118, 560–576.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Kung, C. (1975). Genetic Dissection — An Approach to Neurobiology. In: Eisenstein, E.M. (eds) Aneural Organisms in Neurobiology. Advances in Behavioral Biology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4473-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4473-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4475-9

  • Online ISBN: 978-1-4613-4473-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics