Use of the Isolated Canine Brain in Studies of Cerebral Metabolism, Metabolite Transport, and Cerebrovascular Physiology

  • David D. Gilboe
  • A. Lorris Betz
  • Lester R. Drewes


Traditionally, investigators have used in vitro and in vivo techniques to study metabolism in the brain. Although a great deal of useful information has been derived from studies with in vivo and in vitro systems, a number of difficulties are inherent in such preparations. For example, the preparation of in vitro systems results in disruption of the usual membrane barriers, thus enzymes are placed in an abnormal environment that may contain unusual concentrations of activators, inhibitors, or substrates. Another drawback is that short periods of anoxia are encountered during preparation of brain slices, homogenates, and various cell organelles. Such anoxic conditions are known to produce adverse effects and irreversible changes in the higher centers of the brain. Consequently, one is faced with the monumental task of relating data obtained from the in vitro system, after having made appropriate corrections for artifacts resulting from preparation, to metabolism in the intact organ. This difficulty could be avoided by using in vivo preparations were it not for physiologic and metabolic interference from other tissues. A way to circumvent most of the disadvantages of both the in vitro and in vivo systems in the study of cerebral metabolism is to use an isolated organ preparation.


Masseter Muscle Blood Flow Rate Brain Weight Inhalation Anesthetic Priming Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, O. A., and Yudilevich, D. L. (1969) J. Physiol. (London) 202, 45–58.Google Scholar
  2. Andjus, R. K., Suhara, K., and Sloviter, H. A. (1967) J. Appl. Physiol. 22, 1033–1039.PubMedGoogle Scholar
  3. Betz, A. L., Gilboe, D. D., Yudilevich, D. L., and Drewes, L. R. (1973) Am. J. Physiol. 219, 774–778.Google Scholar
  4. Betz, A. L., and Gilboe, D. D. (1974) Brain Res. 65, 368–372.PubMedCrossRefGoogle Scholar
  5. Betz, A. L., Gilboe, D. D., and Drewes, L. R. (1975) Am. J. Physiol. 228, 895–900.PubMedGoogle Scholar
  6. Blomquist, A. J., and Gilboe, D. D. (1970) Nature 227, 409.PubMedCrossRefGoogle Scholar
  7. Bouckaert, A. J., and Jourdan, F. (1936) Arch. Intern. Pharmacodyn. 53, 523–552.Google Scholar
  8. Chinard, F. P., and Enns, T. (1954) Am. J. Physiol. 178, 197–202.PubMedGoogle Scholar
  9. Chute, A. L., and Smyth, D. H. (1939) Quart. J. Exp. Physiol. 29, 379–394.Google Scholar
  10. Crone, C. (1965a) Acta Physiol. (Scand) 64,407–417.CrossRefGoogle Scholar
  11. Crone, C. (1965b) J. Physiol. (London) 181, 103–113.Google Scholar
  12. Cutler, R. W., and Sipe, J. C. (1971) Am. J. Physiol. 220, 1182–1186.PubMedGoogle Scholar
  13. Drewes, L. R., and Gilboe, D. D. (1973a) J. Biol. Chem. 248, 2489–2496.PubMedGoogle Scholar
  14. Drewes, L. R., and Gilboe, D. D. (1973b) Biochem. Biophys. Acta, 320, 701–707.PubMedGoogle Scholar
  15. Drewes, L. R., Gilboe, D. D., and Betz, A. L. (1973) Arch. Neurol. 29, 385–390.PubMedGoogle Scholar
  16. Everett, N. B., Simmons, B., and Lasher, E. P. (1956) Circ. Res. 4, 419–424.PubMedGoogle Scholar
  17. Exton, J. H., and Park, C. R. (1967) J. Biol. Chem. 242, 2622–2636.PubMedGoogle Scholar
  18. Fog, M. (1939) Arch. Neurol. Psychiat. 41, 260–268.Google Scholar
  19. Geiger, A., and Magnes, J. (1947) Am. J. Physiol. 149, 517–537.PubMedGoogle Scholar
  20. Geiger, A., and Yamasaki, S. (1956) J. Neurochem. 1, 93–100.PubMedCrossRefGoogle Scholar
  21. Gilboe, D. D., Cotanch, W. W., and Glover, M. B. (1965) Nature 206, 94–96.CrossRefGoogle Scholar
  22. Gilboe, D. D., and Betz, A. L. (1970) Am. J. Physiol. 219, 774–778.PubMedGoogle Scholar
  23. Gilboe, D. D., and Betz, A. L. (1973) Am. J. Physiol. 224, 588–595.PubMedGoogle Scholar
  24. Hems, R., Ross, B. D., Berry, M. N., and Krebs, H. A. (1966) Biochem. J. 101, 284–292.PubMedGoogle Scholar
  25. Jongkind, J. F., and Bruntink, R. (1970) J. Neurochem. 17, 1615–1617.PubMedCrossRefGoogle Scholar
  26. Kelman, G. R. (1967) Resp. Physiol. 3, 111–116.CrossRefGoogle Scholar
  27. Kooi, K. A. (1971) Fundamentals ojElectroencephalography, Harper and Row, New York.Google Scholar
  28. Lassen, N. A., Trap-Jensen, J., Alexander, S. C., Olesen, J., and Paulson, O. B. (1971) Am. J. Physiol. 220, 1627–1633.PubMedGoogle Scholar
  29. Levin, V. A., and Gilboe, D. D. (1970) Stroke 1, 270–277.PubMedCrossRefGoogle Scholar
  30. Lowe, R. F., and Gilboe, D. D. (1975) Am. J. Physiol. in press.Google Scholar
  31. Lowry, O. H., Passonneau, J. V., Hasselberger, F. X. and Schulz, D. W. (1964) J. Biol. Chem. 239,18–30.PubMedGoogle Scholar
  32. Lowry, O. H., and Passonneau, J. V. (1972) A Flexible System of Enzymatic Analysis, Academic Press, New York.Google Scholar
  33. Mahin, D. T., and Lofberg, R. T. (1966) Anal. Biochem. 16, 500–509.CrossRefGoogle Scholar
  34. Mandelbaum, I., and Burns, W. H. (1965) J. Am. Med. Assoc. 191, 657–660.Google Scholar
  35. Martin, P., and Yudilevich, D. (1964) Am. J. Physiol. 207, 162–168.PubMedGoogle Scholar
  36. Mayes, P. A., and Felts, J. M. (1966) Eur. Soc. Study Drug Toxicity 7, 16–29.Google Scholar
  37. Meyer, M. W., and Smith, K. A. (1975) Fed. Proc. in press.Google Scholar
  38. Miller, E., Christenson, G. C., and Evans, H. E. (1964) Anatomy of the Dog, W. B. Saunders, Co., Philadelphia.Google Scholar
  39. Minsker, D. H., Gilboe, D. D., and Stone, W. E. (1970) J. Neurochem. 17, 253, 259.PubMedCrossRefGoogle Scholar
  40. Moss, G. (1964) J. Surg. Res. 4, 170–177.PubMedCrossRefGoogle Scholar
  41. Oldendorf, W. H. (1971) Am. J. Physiol. 221, 1629–1639.PubMedGoogle Scholar
  42. Nishiisutsuji-Uwo, J. M., Ross, B. D., and Krebs, H. A. (1967) Biochem. J. 103, 852–862.Google Scholar
  43. Pappenheimer, J. R., and Setchell, B. P. (1973) J. Physiol. (London) 233, 529–551.Google Scholar
  44. Paupel, R. P., Seitz, H. J., and Tarnowski, W. (1972) Arch. Biochem. Biophys. 148, 509–522.CrossRefGoogle Scholar
  45. Posner, J. B., and Plum, F. (1967) Arch. Neurol. 16, 492–496.PubMedGoogle Scholar
  46. Rosomoff, H. L. (1961) J. Appl. Physiol. 16, 395–396.PubMedGoogle Scholar
  47. Schmidt, C. F. (1928) Am. J. Physiol. 84, 202–222.Google Scholar
  48. Sloviter, H. A., and Kamimoto, T. (1967) Nature 216, 458–460.PubMedCrossRefGoogle Scholar
  49. Sokoloff, L. (1959) Pharmacol. Rev. 11, 1–85.PubMedGoogle Scholar
  50. Suda, I., Adachi, C., and Kito, K. (1963) Kobe J. Med. Sci. 9, 41–66.Google Scholar
  51. Swaab, D. F. (1971) J. Neurochem. 18, 2085–2092.PubMedCrossRefGoogle Scholar
  52. Swank, R. L., and Hissen, W. (1965) Arch. Neurol. 13,93–100.PubMedGoogle Scholar
  53. Thompson, A. M., Robertson, R. C., and Bauer, T. A. (1968) J. Appl. Physiol. 24, 407–411.PubMedGoogle Scholar
  54. Weidemann, M. J., Hems, D. A., and Krebs, H. A. (1969) Biochem. J. 115, 1–10.PubMedGoogle Scholar
  55. White, R. J., Albin, M. S., and Verdura, J. (1963) Science 141, 1060–1061.PubMedCrossRefGoogle Scholar
  56. Williamson, J. R., and Corkey, B. E. (1969) Metin. Enzymol. 13, 488.Google Scholar
  57. Yudilevich, D. L., and DeRose, N. (1971) Am. J. Physiol. 220, 841–846.PubMedGoogle Scholar
  58. Yudilevich, D. L., DeRose, N., and Sepulveda, F. V. (1972) Brain Res. 44, 569–578.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • David D. Gilboe
    • 1
  • A. Lorris Betz
    • 1
  • Lester R. Drewes
    • 1
  1. 1.Departments of Neurosurgery and PhysiologyUniversity of WisconsinMadisonUSA

Personalised recommendations