Skip to main content

Composition of the Hot Plasmas in the Magnetosphere

  • Chapter
Physics of the Hot Plasma in the Magnetosphere

Abstract

The investigation of the mass and charge composition of the energetic (keV) plasmas in the earth’s magnetosphere represents one of the most important approaches to establishing the origin of the particles in the plasmas and to understanding the complex electro-dynamic processes occurring within or at the boundaries of the magnetosphere. The processes responsible for the injection, energization, transport, and loss of the plasma components are still largely unidentified and some of the processes are likely to be dependent on the mass and/or charge of the components. Thus, measurements of the differences in energy spectra, spatial distributions, and temporal behavior of the various ionic components may provide the key to identifying and characterizing the important processes. In this paper we shall limit our discussion of the composition of the energetic particles in the magnetosphere primarily to particle energies less than 50 keV. The composition measurements at higher energies and their importance in understanding the magnetospheric processes have recently been reviewed by West (1975) and Krimigis (1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axford, W. I., “Helium in the Atmosphere, Aurora, and Solar Wind,” in Atmospheric Emissions, B. M. McCormac, ed., p. 317, Van Nostrand-Reinhold, 1969.

    Google Scholar 

  • Axford, W. I., and C. O. Hines, “A Unifying Theory of High-Latitude Geophysical Phenomena and Geomagnetic Storms,” Can. J. Phys., 39, 1433, 1961.

    Article  MathSciNet  ADS  Google Scholar 

  • Axford, W. I., “The Origin of Radiation-Belt and Auroral Primary Ions,” in Particles and Fields in the Magnetosphere, B. M. McCormac, ed., p. 46, D. Reidel, Dordrecht, Holland, 1970.

    Google Scholar 

  • Banks, P. M., and T. E. Holzer, “The Polar Wind,” J. Geophys. Res., 73, 6846, 1968.

    Article  ADS  Google Scholar 

  • Bame, S. J., A. J. Hundhausen, J. R. Asbridge, and I. B. Strong, “Solar Wind Ion Composition,” Phys. Rev. Letters, 20, 393, 1968.

    Article  ADS  Google Scholar 

  • Berko, F. W., L. J. Cahill, Jr., and T. A. Fritz, “Protons as Prime Contributors to the Storm-Time Ring Current,” J. Geophys. Res., 80, 1975 (in press).

    Google Scholar 

  • Brice, N., “Wave-Wave Coupling in Multiple Ion Plasma,” J. Geophys. Res., 70, 2520, 1974.

    Google Scholar 

  • Buhler, F., W. I. Axford, H. J. A. Chivers, K. Marti, P. Eberhardt, and J. Geiss, “Rare Gas Isotopes in Auroras,” EOS Trans. Am. Geophys. Union, 53, 1092, 1972.

    Google Scholar 

  • Cladis, J. B., “Effect of Magnetic Field Gradient on Motion of Ions Resonating with Ion Cyclotron Waves,” J. Geophys. Res., 78, 8129, 1973a.

    Article  ADS  Google Scholar 

  • Cladis, J. B., “Interpretation of Energetic Heavy Ion Fluxes Observed during the Magnetic Storm of December 17, 1971,” Radio Science, 8, 1029, 1973b.

    Article  ADS  Google Scholar 

  • Cornwall, J. M., “Radial Diffusion of Ionized Helium and Protons: A Probe for Magnetospheric Dynamics,” J. Geophys. Res., 77, 1756, 1972.

    Article  ADS  Google Scholar 

  • Hoffman, J. H., W. H. Dodson, C. R. Lippincott, and H. D. Hammack, “Initial Ion Composition Results from the Isis Satellite,” J. Geophys. Res., 79, 4247, 1974.

    Google Scholar 

  • Johnson, R. G., R. D. Sharp, and E. G. Shelley, “The Discovery of Energetic He+ Ions in the Magnetosphere,” J. Geophys. Res., 79, 3135, 1974.

    Article  ADS  Google Scholar 

  • Krimigis, S. M., “The Charge Composition Aspects of Energetic Trapped Particles,” Proceedings of the Solar Terrestrial Relations Conference, held at the Univ. of Calgary, Calgary, Alberta, Canada, Aug. 20 – Sept. 1, 1972, D. Venkatesan, ed., p. 207, 1973.

    Google Scholar 

  • Meinel, A. B., “Doppler-Shifted Auroral Hydrogen Emission,” Astrophys. J., 113, 50, 1951.

    Article  ADS  Google Scholar 

  • Mogro-Compero, A., “Geomagnetically Trapped Carbon, Nitrogen, and Oxygen Nuclei,” J. Geophys. Res., 77, 2799, 1972.

    Article  ADS  Google Scholar 

  • Nakada, M. P., J. W. Dungey, and W. N. Hess, “On the Origin of Outer Belt Protons,” J. Geophys. Res., 70, 3529, 1965.

    Article  ADS  Google Scholar 

  • Palmadesso, P. J., T. P. Coffey, S. I. Ossakow, and K. Papadopoulos, “Topside Ionosphere Ion Heating Due to Electrostatic Ion Cyclotron Turbulence,” Geophys. Res. Letters, 1, 105. 1974.

    Article  ADS  Google Scholar 

  • Reasoner, D. L., “Auroral Helium Precipitation,” Rev. Geophys. Space Phys., 11, 169, 1973.

    Article  ADS  Google Scholar 

  • Reasoner, D. L., R. H. Eather, and B. J. O’Brien, “Detection of Alpha Particles in Auroral Phenomena,” J. Geophys. Res., 73, 4185, 1968.

    Article  ADS  Google Scholar 

  • Romick, G. J., W. L. Ecklund, R. A. Greenwald, B. B. Balsley, and W. L. Imhof, “The Interrelationship between the > 130 keV Trapping Boundary, the VHF Radar Backscatter, and the Visual Aurora,” J. Geophys. Res., 70, 2439, 1974.

    Article  ADS  Google Scholar 

  • Romick, G. J., and R. D. Sharp, “Simultaneous Measurements of an Incident Hydrogen Flux and the Resulting Hydrogen Balmer Alpha-Emission in an Auroral Hydrogen Arc,” J. Geophys. Res., 72, 4791, 1967.

    Article  ADS  Google Scholar 

  • Sharp, R. D., R. G. Johnson, E. G. Shelley, and K. K. Harris, “Energetic O+ Ions in the Magnetosphere,” J. Geophys. Res., 79, l844, 1974a.

    ADS  Google Scholar 

  • Sharp, R. D., R. G. Johnson, and E. G. Shelley, “Satellite Measurements of Auroral Alpha Particles,” J. Geophys. Res., 79, 5167, 1974b.

    Article  ADS  Google Scholar 

  • Shelley, E. G., R. G. Johnson, and R. D. Sharp, “Satellite Observations of Energetic Heavy Ions during a Geomagnetic Storm,” J. Geophys. Res., 77, 6104, 1972.

    Article  ADS  Google Scholar 

  • Shelley, E. G., R. G. Johnson, and R. D. Sharp, “Morphology of Energetic O+ in the Magnetosphere,” in Magnetospheric Physics, B. M. McCormac, ed., p. 135, D. Reidel, Dordrecht, Netherlands, 1974a.

    Google Scholar 

  • Shelley, E. G., R. D. Sharp, and R. G. Johnson, “Dayside Convection Electric Field Deduced from Ion Measurements in the Low-Altitude Cusp,” EOS Trans. Am. Geophys. Union, 56, 1175, 1974b.

    Google Scholar 

  • Shelley, E. G., R. D. Sharp, and R. G. Johnson, “The Ionosphere as the Source of Ring-Current Particles,” EOS Trans. Am. Geophys. Union, 55, 1015, 1974c.

    Google Scholar 

  • Torr, M. R., J. C. G. Walker, and D. G. Torr, “Escape of Fast Oxygen from the Atmosphere during Geomagnetic Storms,” J. Geophys. Res., 79, 5267, 1974.

    Article  ADS  Google Scholar 

  • Tverskoy, B. A., “Main Mechanisms in the Formation of the Earth’s Radiation Belts,” Revs. Geophys., 7, 219, 1969.

    Article  ADS  Google Scholar 

  • West, H. I., Jr., “Advances in Magnetospheric Physics 1971–1974: Energetic Particles,” Rev. Geophys. Space Phys., 1975 (in press).

    Google Scholar 

  • Van Allen, J. A., “Dynamics, Composition and Origin of the Geomagnetically Trapped Corpuscular Radiation,” Trans. Int. Astron. Union, XIB, 99, 1962.

    Google Scholar 

  • Whalen, B. A., J. E. Miller, and I. B. McDiarmid, “Evidence for a Solar Wind Origin of Auroral Ions from Low Energy Ion Measurements,” J. Geophys. Res., 76, 2406, 1971.

    Article  ADS  Google Scholar 

  • Whalen, B. A., and I. B. McDiarmid, “Further Low-Energy Auroral Ion Composition Measurements,” J. Geophys. Res., 77, 1306, 1972.

    Article  ADS  Google Scholar 

  • Whalen, B. A., D. W. Green, and I. B. McDiarmid, “Observations of Ionospheric Ion Flow and Eelated Convective Electric Fields in and Near an Auroral Arc,” J. Geophys. Res., 79, 2835, 1974.

    Article  ADS  Google Scholar 

  • Williams, D. J., J. N. Barfield, and T. A. Fritz, “initial Explorer 45 Substorm Observations and Electric Field Considerations,” J. Geophys. Ees., 79, 554, 1974

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Johnson, R.G., Sharp, R.D., Shelley, E.G. (1975). Composition of the Hot Plasmas in the Magnetosphere. In: Hultqvist, B., Stenflo, L. (eds) Physics of the Hot Plasma in the Magnetosphere. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4437-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4437-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4439-1

  • Online ISBN: 978-1-4613-4437-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics