Skip to main content

The Influences of Impressed Electrical Fields at EEG Frequencies on Brain and Behavior

  • Chapter
Behavior and Brain Electrical Activity

Abstract

In the search for functional correlates of information processing in brain tissue, early interest in the electroencephalogram proved disappointing. Although phenomena such as blocking of the alpha rhythm with eye closing and visual attention (Berger 1929, Adrian 1947) were quickly recognized, it has remained for much later studies with sophisticated computer analyses and pattern-recognition techniques to reveal EEG correlates of decision-making (Elazar and Adey 1967; Hanley, Walter, Rhodes, and Adey 1968), of psychological stress in hostile questioning (Berkhout, Walter, and Adey 1969), and of difficult perceptual tasks (Walter, Kado, Rhodes, and Adey 1967). Even though the latter studies have revealed EEG signatures for groups of subjects as well as for individuals, clear evidence has been lacking that would assign a causal role to the EEG in information processing. Indeed, it has been widely considered as a “noise” in cerebral tissue, having no direct physiological role, even though it could be correlated with specific behavioral states, including the brief epochs that accompany decision-making and perception, and even though these correlates might be reliable indicators of quite subtle differences, such as correct versus incorrect task performance at a later time (Hanley, Walter, Rhodes, and Adey 1968), or of opening versus closing of the hand in a phantasied motor performance (Nirenberg, Hanley, and Stear 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey, W.R. 1970. Cerebral structure and information storage. Progress Physiol. Psychol. 3:188.

    Google Scholar 

  • Adey, W.R. 1971. Evidence for cerebral membrane effects of calcium, derived from direct-current gradient, impedance, and intracellular records. Exp. Neurol. 30:78.

    Article  PubMed  CAS  Google Scholar 

  • Adey, W.R. 1972. Organization of brain tissue: Is the brain a noisy processor? Internat. J. Neurosci. 3:271.

    Article  CAS  Google Scholar 

  • Adey, W.R. 1973. Continuity-discontinuity problems: mixed systems. In Dynamic Patterns of Brain Cell Assemblies. Massachusetts Institute of Technology, Neurosciences Research Program Bulletin (in press).

    Google Scholar 

  • Adey, W.R., Bell, F.R., and Dennis, B.J. 1962. Effects of LSD, psilocybin and psilocin on temporal lobe EEG patterns and learned behavior in the cat. Neurology (Minneap.) 12:591.

    Google Scholar 

  • Adey, W.R., Kado, R.T., and Didio, J. 1962. Impedance measurements in brain tissue of animals using microvolt signals. Exp. Neurol. 5:47.

    Article  PubMed  CAS  Google Scholar 

  • Adey, W.R., Kado, R.T., Didio, J., and Schindler, W.J. 1963. Impedance changes in cerebral tissue accompanying a learned discriminative performance in the cat. Exp. Neurol. 7:259.

    Article  PubMed  CAS  Google Scholar 

  • Adey, W.R., Kado, R.T., Mcllwain, J.T., and Walter, D.O. 1966. The role of neuronal elements in regional cerebral impedance changes in altering, orienting and discriminative responses. Exp. Neurol. 15:490.

    Article  PubMed  CAS  Google Scholar 

  • Adey, W.R., and Walter, D.O. 1963. Application of phase detection and averaging techniques in computer analysis of EEG records in the cat. Exp. Neurol. 7:186.

    Article  PubMed  CAS  Google Scholar 

  • Adrian, E.D. 1947. The Physical Basis of Perception. New York: Cambridge University Press.

    Google Scholar 

  • Anninos, P.A., Beek, P., Csermely, T.J., Harth, E.M., and Pertile, G. 1970. Dynamics of neural structures. J. Theor. Biol. 26:121.

    Article  PubMed  CAS  Google Scholar 

  • Bass, L., and Moore, W.J. 1968. A model of nervous excitation based on the Wien dissociation effect. In A. Richard, and C.M. Davidson (eds.), Structural Chemistry and Molecular Biology, pp. 356–368. San Francisco: Freeman.

    Google Scholar 

  • Bawin, S.M., Gavalas-Medici, R.J., and Adey, W.R. 1973. Effects of modulated very high frequency fields on specific brain rhythms in cats. Brain Res. 58:365.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, H.S. 1963. Morphological aspects of extracellular polysaccharides. J. Histochem. Cytochem. 11:14.

    Article  Google Scholar 

  • Berger, H. 1929. Über das Elektroenkephalogramm des Menschen. Archiv. Psychiat. 87:527.

    Article  Google Scholar 

  • Berkhout, J., Walter, D.O., and Adey, W.R. 1969. Alterations of the human electroencephalogram induced by stressful verbal activity. Electroencephalogr. Clin. Neurophysiol. 27:457.

    Article  PubMed  CAS  Google Scholar 

  • Cole, K.S. 1940. Permeability and impermeability of cell membranes for ions. Cold Spring Harbor Symp. Quant. Biol. 4:110.

    Google Scholar 

  • Coombs., J.S., Curtis, D.R., and Eccles, J.C. 1959. The electric constants of the motoneurons membrane. J. Physiol. Lond. 145:505.

    PubMed  CAS  Google Scholar 

  • Creutzfeldt, O.D., Furster, J.M., Lux, H.D., and Nacimiento, A. 1964. Experimentaler Nachweis von Beziehungen zwischen EEG-wellen und Activitat corticaler Nervenzellen. Naturwiss 51:166.

    Article  Google Scholar 

  • Creutzfeldt, O.D., Watanabe, S., and Lux, H.D. 1966. Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephelogr. Clin. Neurophysiol. 20:19.

    Article  CAS  Google Scholar 

  • Delgado, J.M.R., Johnson, V.S., Wallace, J.D. and Bradley, R.J. 1970. Operant conditioning of amygdala spindling in the free chimpanzee. Brain Res. 22:347.

    Article  PubMed  CAS  Google Scholar 

  • Ehinger, B. 1973. Glial uptake of taurine in the rabbit retina. Brain Res. 60:512.

    Article  PubMed  CAS  Google Scholar 

  • Ehinger, B., and Falck, B. 1971. Autoradiography of some suspected neurotransmitter substances: GABA, glycine, aspartic acid, glutamic acid, histamine, dopamine, and L-DOPA. Brain Res. 33:157.

    Article  PubMed  CAS  Google Scholar 

  • Elazar, Z., and Adey, W.R. 1967. Electroencephalographic correlates of learning in subcortical and cortical structures. Electroencephalogr. Clin. Neurophysiol. 23:306.

    Article  PubMed  CAS  Google Scholar 

  • Elul, R. 1962. Dipoles of spontaneous activity in the cerebral cortex. Exp. Neurol. 6:285.

    Article  Google Scholar 

  • Elul, R. 1965. Specific site of generation of brain waves. Physiologist 7:125 (abstract).

    Google Scholar 

  • Elul, R. 1966. Use of non-uniform electric fields for evaluation of the potential difference between two phases. Transactions of the Faraday Society, London 62:3484.

    Article  CAS  Google Scholar 

  • Elul, R. 1967a. Statistical mechanisms in generation of the EEG. In L.J. Fogel and F.W. George (eds.), Progress in Biomedical Engineering, p. 131. Washington, D.C: Spartan Books.

    Google Scholar 

  • Elul, R. 1967b. Fixed charge in the cell membrane. J. Physiol. Lond. 189:351.

    CAS  Google Scholar 

  • Elul, R. 1972. The genesis of the EEG. Internat. Rev. Neurobiol. 15:228.

    Google Scholar 

  • Elul, R., and Adey, W.R. 1965. The intracellular correlate of gross evoked responses. Proceedings 23rd International Congress of Physiological Sciences, Tokyo. Abstract 1034, p. 434.

    Google Scholar 

  • Fox, S.S., and Ahn, H. 1971. Identification of functional bioelectric configurations in spontaneous activity of the brain. Proceedings First Annual Meeting Society for Neuro-science, Washington, D.C, p. 81.

    Google Scholar 

  • Fox, S.S., and Rudell, A.P. 1968. Operant controlled neural event: Formal and systematic approach to coding of behavior in brain. Science 162:1299.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, Y., and Sato, T. 1964. Intracellular records from hippocampal pyramidal cells in rabbit during theta rhythm activity. J. Neurophysiol. 27:1011.

    Google Scholar 

  • Gasteiger, E.L. 1959. The electrogram in deafferented spinal cord. Proceedings 21st International Congress of Physiological Sciences, Buenos Aires, p. 105.

    Google Scholar 

  • Gavalas, R.J., Walter, D.O., Hamer, J., and Adey, W.R. 1970. Effect of low-level, lowfrequency electric fields on EEG and behavior in Macaca nemestrina. Brain Res. 18:491.

    Article  PubMed  CAS  Google Scholar 

  • Green, T.D., Maxwell, D.S., Schindler, W.J., and Stumpf, C. 1960. Rabbit EEG “theta” rhythm; its anatomical source and relation to activity in single neurons. J. Neurophysiol. 23:403.

    Google Scholar 

  • Hamer, J. 1968. Effects of low-level, low frequency electric fields on human reaction time. Communications in Behavioral Biology 2, part 2A.

    Google Scholar 

  • Hanley, J., Walter, D.O., Rhodes, J.M., and Adey, W.R. 1968. Chimpanzee performance data; computer analysis of electroencephalograms. Nature 229:879.

    Article  Google Scholar 

  • Henn, F.A., and Hamberger, A. 1971. Glial cell function: Uptake of transmitter substances. Proc. Natl. Acad. Sci. USA 68:2686.

    Article  PubMed  CAS  Google Scholar 

  • Hyden, H. 1972. Macromolecules and behaviour. In G.B. Ansell and P.B. Bradley (eds.), The Arthur Thomson Lectures, University of Birmingham, England. London: Macmillan, 75 pp.

    Google Scholar 

  • Kaczmarek, L.K., and Adey, W.R. 1973. The efflux of 45Ca2+ and 3H-gamma-aminobutyric acid from cat cerebral cortex. Brain Res. 63:331.

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek, L.K., and Adey, W.R. 1974a. Some chemical and electrophysiological effects of glutamate in cerebral cortex. J. Neurobiol. (in press).

    Google Scholar 

  • Kaczmarek, L.K., and Adey, W.R. 1974b. Weak electric gradients change ionic and transmitter fluxes in cortex. Brain Res. 66:537.

    Article  Google Scholar 

  • Karahashi, Y., and Goldring, S. 1966. Intracellular potentials from “idle” cells in cerebral cortex of cat. Electroencephalogr. Clin. Neurophysiol. 20:600.

    Article  PubMed  CAS  Google Scholar 

  • Katchalsky, A. 1964. Polyelectrolytes and their biological interaction. In Connective Tissue: Intercellular Macromolecules, p. 9. New York Heart Association. Boston: Little, Brown.

    Google Scholar 

  • Konig, H., and Ankermüller, F. 1960. Über den Einfluss besonders niederfrequenter elektrischer Vorgange in der Atmosphäre auf den Menschen. Naturwiss 21:486.

    Article  Google Scholar 

  • Mumford, W.W. 1970. Heat stress due to RF radiation. In S.F. Cleary (ed.), Proceedings Second Annual Triservice Conference on Biological Effects of Microwave Energy, p. 21. Rockville, Maryland: Bureau of Radiological Health. Document BRH/DBE 70-2, PB 193898.

    Google Scholar 

  • Nelson, P.G. 1966. Interaction between spinal motoneurons of the cat. J. Neurophysiol. 29:275.

    PubMed  CAS  Google Scholar 

  • Nicholls, J.G., and Kuffler, S.W. 1964. Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leach: ionic composition of glial cells and neurons. J. Neurophysiol. 27:645.

    PubMed  CAS  Google Scholar 

  • Nirenberg, L.M., Hanley, J., and Stear, E.B. 1971. A new approach to prosthetic control: EEG motor signal tracking with an adaptively designed phase-locked loop. Institute of Electrical and Electronics Engineers. Transactions in Biomedical Engineering 18:389.

    Article  CAS  Google Scholar 

  • Pasik, P., Pasik, T., Hamori, J., and Szentagothai, J. 1973. Interneurons in monkey lateral geniculate nucleus: Participation in “triadic” and “non-triadic” synapses. Proceedings 3rd Annual Meeting Society for Neuroscience, San Diego, California, p. 298 (abstract), Washington, D.C.

    Google Scholar 

  • Pease, D.C. 1966. Polysaccharides associated with the exterior surface of epithelial cells: Kidney, intestine, brain. J. Ultrastruc. Res. 15:555.

    Article  CAS  Google Scholar 

  • Purpura, D.P., Shofer, R.J., and Musgrave, F.S. 1964. Cortical intracellular potentials during augmenting and recruiting responses. II. Patterns of synaptic activities in pyramidal and non-pyramidal tract neurons. J. Neurophysiol. 27:133.

    PubMed  CAS  Google Scholar 

  • Rail, W., Shepard, G.M., Reese, T.S., and Brightman, M.W. 1966. Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol. 14:44.

    Article  Google Scholar 

  • Rambourg, A., and Leblond, C.P. 1967. Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cells in the rat. J. Cell. Biol. 32:153.

    Article  Google Scholar 

  • Ramwell, P.W., and Shaw, J.E. 1970. Biological significance of the prostaglandins. Recent Prog. Horm. Res. 26:139.

    PubMed  CAS  Google Scholar 

  • Ranck, J.B. 1963. Specific impedance of rabbit cerebral cortex. Exp. Neurol. 7:144.

    Article  PubMed  Google Scholar 

  • Reed, D.J., Woodbury, D.M., and Holtzer, R.L. 1964. Brain edema, electrolytes and skeletal muscle. Arch. Neurol. 10:604.

    PubMed  CAS  Google Scholar 

  • Schmitt, F.O., and Samson, F.E. (eds.) 1969. Brain-cell microenvironment. Massachusetts Institute of Technology, Neurosciences Research Program Bulletin 7:277.

    Google Scholar 

  • Schwartz, G. 1967. A basic approach to a general theory for cooperative intramolecular conformation changes of linear biopolymers. Biopolymers 5:321.

    Article  Google Scholar 

  • Schwartz, G. 1970. Cooperative binding to linear biopolymers. 1. Fundamental static and dynamic properties. Eur. J. Biochem. 12:442.

    Article  Google Scholar 

  • Schwartz, G., Klose, S., and Balthasar, W. 1970. Cooperative binding to linear biopolymers. 2. Thermodynamic analysis of the proflavine-poly (l-glutamic acid) system. Eur. J. Biochem. 12:454.

    Article  Google Scholar 

  • Schwartz, G., and Balthasar, W. 1970. Cooperative binding to linear biopolymers. 3. Thermodynamic and kinetic analysis of the acridine-poly (l-glutamic acid) system. Eur. J. Biochem. 12:461.

    Article  Google Scholar 

  • Sterman, M.B., Howe, R.C, and MacDonald, L.R. 1970. Facilitation of spindlebursts sleep by conditioning of electroencephalographic activity while awake. Science 167:1146.

    Article  PubMed  CAS  Google Scholar 

  • Sterman, M.B., Wyrwicka, W., and Clemente, C.D. 1969. EEG correlates of behavioral inhibition. Cond. Reflex 4:124.

    Google Scholar 

  • Sutherland, E.W., and Robison, G.A. 1966. The role of 3, 5-adenosine monophosphate in responses to catecholamines and other hormones. Pharmacol. Rev. 18:145.

    PubMed  CAS  Google Scholar 

  • Tarby, T.J., and Adey, W.R. 1968. Cytological chemical identification of calcium in brain tissue. Anat. Rec. 157:331 (abstract).

    Google Scholar 

  • van Harreveld, A., Crowell, J., and Malhotra, S. 1965. A study of extracellular space in central nervous tissue by freeze substitution. J. Cell. Biol. 25:117.

    Article  Google Scholar 

  • van Harreveld, A., Dafny, N., and Khattab, F.I. 1971. Effects of calcium on the electrical resistance and extracellular space of cerebral cortex. Exp. Neurol. 31:358.

    Article  PubMed  Google Scholar 

  • Van der Tweel, L.H., and Verdyn Lunel, H.F.E. 1965. Human visual responses to sinusoidally modulated light. Electroencephalogr. Clin. Neurophysiol. 18:587.

    Article  Google Scholar 

  • Walter, D.O., and Adey, W.R. 1966. Linear and non-linear mechanisms of brain wave generation. Ann. New York Acad. Sci. 128:772.

    Article  CAS  Google Scholar 

  • Walter, D.O., Kado, R.T., Rhodes, J.M., and Adey, W.R. 1967. Electroencephalographic baselines in astronaut candidates estimated by computation and pattern-recognition techniques. Aerospace Med. 33:371.

    Google Scholar 

  • Wever, R. 1968. Einfluss schwacher elektromagnetischer Felder auf die circadiane Periodik des Menschen. Naturwiss 1:29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Adey, W.R. (1975). The Influences of Impressed Electrical Fields at EEG Frequencies on Brain and Behavior. In: Burch, N., Altshuler, H.L. (eds) Behavior and Brain Electrical Activity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4434-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4434-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4436-0

  • Online ISBN: 978-1-4613-4434-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics