Skip to main content

Deformation Texture and Magnetic Properties of the Magnetoplumbite Ferrites

  • Chapter
Deformation of Ceramic Materials

Abstract

The barium and strontium hexaferrites, BaFe12O19 and SrFe12O19, are ferrimagnetic magnetoplumbites with a hexagonal crystal structure favoring the [0001] easy magnetic direction. Commercial utilization of these materials has lead to the development of sintered polycrystalline bodies in which a substantial degree of preferred orientation or texture of the individual crystallites has been accomplished by powder pressing in a magnetic field1. The uniaxial compaction involved, however, has a randomizing tendency, one that might be avoided if the crystallite alignment process were concurrent with or following the sintering stage. Several researchers have recently achieved a high degree of preferred orientation and correspondingly enhanced magnetic properties through hot forming2–4. This paper addresses the effects of hot working upon orientation in these ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Stuijts, Trans. Brit. Ceram. Soc., 55, 57–74, 1956.

    CAS  Google Scholar 

  2. R. M. Haag, AUSD-0248-71, CR, 1971.

    Google Scholar 

  3. N. Ichinose and Z. Tanno, J. Elect. Cer. Japan 3, (9), 57–61, 1972.

    Google Scholar 

  4. M. H. Hodge, W. R. Bitler, and R. C. Bradt, J. Amer. Cer. Soc. 56, (10) 497–501, 1973.

    Article  CAS  Google Scholar 

  5. D. R. Taft, RADC-TR-67-614, 1967.

    Google Scholar 

  6. E. Heyn and M. A. Grossman, Physical Metallurgy, John Wiley and Sons, Inc., New York, 1925.

    Google Scholar 

  7. M. H. Hodge, Ph.D. Thesis, Penn State Univ., 1973.

    Google Scholar 

  8. P. Ludwick, Elemente der Technologischen Mechanick, Berlin, Springer, 1909.

    Google Scholar 

  9. A. H. Cottrell, J. Mech. and Phys. Solids, (1), 53–63, 1952.

    Google Scholar 

  10. A. H. Cottrell and V. Aytekin, J. Inst. Metals, (77), 389–391, 1950.

    Google Scholar 

  11. M. E. Baker, Ph.D. Thesis, Cornell University, Thesis Univ. Microf. No. 68-16762.

    Google Scholar 

  12. S. P. Murorka and R. A. Swalin, J. Phys. Chem. Solids, 32, (6), 2015–2020, 1971.

    Article  Google Scholar 

  13. S. P. Murorka and R. A. Swalin, J. Phys. Chem. Solids, 32, (6), 1277–1285, 1971.

    Article  Google Scholar 

  14. M. F. De Souza, Phys. Rev., 188, (3), 1367–1370, 1969.

    Article  Google Scholar 

  15. D. C. Freeman and D. N. Stomires, J. Chem. Phys., 35, 799–801, 1961.

    Article  CAS  Google Scholar 

  16. H. M. O’Bryan and F. V. DiMarcello, J. Am. Ceram. Soc., 53, (7), 413–416, 1970.

    Article  Google Scholar 

  17. R. Krishnan, Phys. Stat. Solidi, 32, (2), 695–701, 1969.

    Article  CAS  Google Scholar 

  18. R. J. Bratton, J. Am. Ceram. Soc., 52, (8), 417–419, 1969.

    Article  CAS  Google Scholar 

  19. J. R. Keski and I. B. Cutler, J. Am. Ceram. Soc., 51, (3), 440–444, 1968.

    Article  CAS  Google Scholar 

  20. J. H. Christian and H. L. Taylor, J. Appl. Phys., 38, (10), 3843–3845, 1967.

    Article  CAS  Google Scholar 

  21. T. Sasamoto and T. Sata, Kogyo Kaguku Zasski, 74, (5), 832–839, 1971.

    CAS  Google Scholar 

  22. J. Kummer and M. E. Millberg, C. and EN., 90–99, 1969.

    Google Scholar 

  23. T. G. Langdon, Phil. Mag., 22, 689–700, 1970.

    Article  Google Scholar 

  24. J. P. Weertman, J. Appl. Phys., 26, 1213–1217, 1953.

    Article  Google Scholar 

  25. R. Raj and M. F. Ashby, Mat. Trans., 39 1937–1944, 1972.

    Google Scholar 

  26. H. G. van Bueren and J. Hornstra, 5th Int. Symp. React. Solids, Munich, 1964, ed., G. M. Schwab, Elsevier, Amsterdam, 1965.

    Google Scholar 

  27. J. Smit and H. P. J. Wijn, Ferrites, John Wiley and Sons, Inc., New York, 1959.

    Google Scholar 

  28. A. Holz, J. Appl. Phys., 41, (3), 1095–1096, 1970.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Hodge, M.H., Bitler, W.R., Bradt, R.C. (1975). Deformation Texture and Magnetic Properties of the Magnetoplumbite Ferrites. In: Bradt, R.C., Tressler, R.E. (eds) Deformation of Ceramic Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4431-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4431-5_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4433-9

  • Online ISBN: 978-1-4613-4431-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics