Skip to main content

Special Techniques in the X-Ray Analysis of Samples

  • Chapter
Practical Scanning Electron Microscopy

Abstract

The x-ray signals obtained from the SEM-EPMA are most often used either to identify the elements present in a sample or to measure the relative or actual amounts of these elements in localized areas of the sample. The methods for determining the presence of a given element by the wavelength-or energy-dispersive method have been described in previous chapters. Similarly, the methods of scanning x-ray analysis and quantitative analysis have been discussed in some detail (Chapters IX–XI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Shiraiwa, N. Fujino, and J. Murayama, in Proceedings of the Sixth International Conference on X-Ray Optics and Microanalysis (G. Shinoda, K. Kohra, and T. Ichinokawa, eds.), University of Tokyo Press (1972), p. 213.

    Google Scholar 

  2. G. L. Fisher and G. D. Farningham, Quantitative Carbon Analysis of Nickel Steels with the Electron Probe Microanalyzer, ASM Materials Engineering Congress, Cleveland, Ohio, October (1972).

    Google Scholar 

  3. P. Duncumb and D. A. Melford, in X-Ray Optics and Microanalysis, Fourth International Conference on X-Ray Optics and Microanalysis (R. Castaing, P. Deschamps, and J. Philibert, eds.), Hermann, Paris (1966), p. 240.

    Google Scholar 

  4. D. W. Fisher and W. L. Baun, Norelco Reporter, 14, 92 (1967).

    Google Scholar 

  5. J. E. Holliday, Norelco Reporter, 14, 84 (1967).

    CAS  Google Scholar 

  6. R. Castaing, in Advances in Electronics and Electron Physics, (L. Marton, ed.), p. 317, Academic Press, New York (1960).

    Google Scholar 

  7. R. Castaing and J. Deschamps, Compt. Rend., 238, 1506 (1954).

    Google Scholar 

  8. J. S. Duerr and R. E. Ogilvie, Anal. Chem., 44, 2361 (1972).

    Article  CAS  Google Scholar 

  9. G. W. Bruno and S. H. Moll, Second National Microprobe Conference, Boston, Massachusetts (1967), Paper 57.

    Google Scholar 

  10. R. Theisen, Quantitative Electron Microprobe Analysis, Springer, Berlin (1965).

    Google Scholar 

  11. V. E. Kohlhaas and F. Scheiding, Arch. Eisenhüttenwessen, 40, 1 (1969).

    Google Scholar 

  12. R. H. Barkalow, R. W. Kraft, and J. I. Goldstein, Met. Trans., 3, 919 (1972).

    Article  CAS  Google Scholar 

  13. B. L. Henke and E. S. Ebisu, in Advances in X-Ray Analysis, Vol. 17, Plenum Press, New York (1974), p. 150.

    Google Scholar 

  14. H. A. Liebhafsky, H. G. Pfeiffer, and P. D. Zemany, Anal. Chem. 27, 1257 (1955).

    Article  CAS  Google Scholar 

  15. T. O. Ziebold, Anal. Chem., 39, 858 (1967).

    Article  CAS  Google Scholar 

  16. H. Yakowitz, C. E. Fiori, and R. E. Michaelis, NBS Special Publication 260–22 (1971).

    Google Scholar 

  17. F. Kunz, E. Eichen, and A. Varshneya, in Proceedings of the Sixth National Conference on Electron Probe Analysis EPASA, Pittsburgh (1971), Paper 20.

    Google Scholar 

  18. R. E. Michaelis, H. Yakowitz, and G. A. Moore, J. Res. NBS, A68, 343 (1964).

    Google Scholar 

  19. H. Yakowitz, D. L. Vieth, K. F. J. Heinrich, and R. E. Michaelis, NBS Special Publication 260–10 (1965).

    Google Scholar 

  20. J. I. Goldstein, F. J. Majeske, and H. Yakowitz, in Applications of X-Ray Analysis, Vol. 10 (J. B. Newkirk and G. R. Mallett, eds.), Plenum Press, New York (1967), p. 431.

    Google Scholar 

  21. P. R. Buseck and J. I. Goldstein, Geol. Soc. Am. Bull, 80, 2141 (1969).

    Article  CAS  Google Scholar 

  22. H. Yakowitz, A. W. Ruff, and R. E. Michaelis, NBS Special Publication 260–43 (1972).

    Google Scholar 

  23. E. L. Bauer, A Statistical Manual for Chemists, 2nd ed., Academic Press, New York (1971), p. 189.

    Google Scholar 

  24. H. A. Liebhafsky, H. G. Pfeiffer, and P. D. Zemany, in X-Ray Microscopy and X-Ray Microanalysis (A. Engstrom, V. Cosslett, and H. Pattee, eds.), Elsevier, Amsterdam (1960), p. 321.

    Google Scholar 

  25. R. H. Hewins and J. I. Goldstein, “Metal-Olivine Associations and Ni-Co Contents in Apollo 12 Mare Basalts,” Earth and Planet. Sci. Lett. 24, 59 (1974).

    Article  CAS  Google Scholar 

  26. T. O. Ziebold and R. E. Ogilvie, Anal. Chem., 36, 322 (1964).

    Article  CAS  Google Scholar 

  27. J. I. Goldstein, J. Geophys. Res., 72, 4689 (1967).

    Article  CAS  Google Scholar 

  28. S. J. B. Reed and J. V. P. Long, in X-Ray Optics and X-Ray Microanalysis, Academic Press, New York (1963), p. 317.

    Google Scholar 

  29. E. J. Rapperport, in Advances in Electronics and Electron Physics, Supplement 6, Academic Press, New York (1969), p. 117.

    Google Scholar 

  30. J. B. Gilmour, “The Role of Manganese in the Formation of Proeutectoid Ferrite,” Ph.D. Thesis, McMaster University (1970).

    Google Scholar 

  31. P. K. Gupta, J. Phys. D. Appl. Phys., 3, 1919 (1970).

    Article  CAS  Google Scholar 

  32. A. S. Norkiewicz, “Dissolution of Phosphides in the Ternary Fe-Ni-P System,” M.S. Thesis, Lehigh University (1972).

    Google Scholar 

  33. J. B. Gilmour, G. R. Purdy, and J. S. Kirkaldy, Met. Trans., 3, 3213 (1972).

    Article  CAS  Google Scholar 

  34. G. T. Miyake and J. I. Goldstein, Geochim. et Cosmochim. Acta, 38, 1201 (1974).

    Article  CAS  Google Scholar 

  35. D. M. Koffman, Norelco Reporter, 11, 59 (1964).

    Google Scholar 

  36. J. I. Goldstein and R. E. Ogilvie, in X-Ray Optics and Microanalysis, IVth International Congress on X-Ray Optics and Microanalysis (R. Castaing, P. Deschamps, and J. Philibert, eds.), Hermann, Paris (1966), p. 594.

    Google Scholar 

  37. M. J. Henoc, F. Maurice, and A. Zemskoff, in Fifth International Congress on X-Ray Optics and Microanalysis (G. Mollenstedt and K. H. Gaukler, eds.), Springer Verlag, Berlin (1969), p. 187.

    Google Scholar 

  38. E. W. White, in “Tutorial Session,” 7th National Conference on Electron Probe Analysis (1972).

    Google Scholar 

  39. E. W. White, in Microprobe Analysis (C. A. Andersen, ed.), Wiley New York (1973), p. 349.

    Google Scholar 

  40. J. W. Colby, D. R. Wonsiddler, and A. Androshuck, in Proceedings of the 4th National Conference on Electron Probe Analysis, EPASA (1969), p. 26.

    Google Scholar 

  41. A. L. Albee and A. A. Chodos, Am. Mineral, 55, 491 (1970).

    CAS  Google Scholar 

  42. J. W. Colby, in Proceedings of the 6th International Conference on X-Ray Optics and Microanalysis (G. Shinoda, K. Kohra, and T. Ichinokawa, eds.), University of Tokyo Press (1972), p. 247.

    Google Scholar 

  43. J. W. Colby, in Advances in X-Ray Analysis, Vol. 11, Plenum Press, New York (1968), p. 287.

    Google Scholar 

  44. J. W. Colby, in Thin Film Dielectrics (F. Vratny, ed.), The Electr. Chem. Soc, New York (1969).

    Google Scholar 

  45. R. R. Warner and J. R. Coleman, Micron, 4, 61 (1973).

    Google Scholar 

  46. Y. Oda and K. Nakajima, J. Jap. Inst. Met., 37, 673 (1973).

    CAS  Google Scholar 

  47. V. E. Cosslett and R. N. Thomas, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York (1966), p. 248.

    Google Scholar 

  48. V. E. Cosslett and R. N. Thomas, Brit. J. Appl. Phys., 15, 1283 (1964).

    Article  CAS  Google Scholar 

  49. P. Duncumb and P. K. Shields, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York (1966), p. 284.

    Google Scholar 

  50. D. F. Kyser and K. Murata, in Proceedings of the 8th National Conference on Electron Probe Analysis, EPASA (1973), p. 28.

    Google Scholar 

  51. D. F. Kyser and K. Murata, IBM J. Res. Dev., 18, 352 (1974).

    Article  CAS  Google Scholar 

  52. M. A. Nicolet, J. Mayer and I. Mitchell, Science, 177, 844 (1972).

    Article  Google Scholar 

  53. G. D. Bergland, IEEE Trans., Audio and Electroacoustics, AU-17, 138 (1969).

    Article  Google Scholar 

  54. G. D. Bergland, IEEE Spectrum, 6, 41 (1969).

    Article  Google Scholar 

  55. R. Bracewell, in The Fourier Transform and Its Applications, McGraw-Hill, New York (1965), p. 108.

    Google Scholar 

  56. J. W. Colby, in “Tutorial Session,” 7th National Conference on Electron Probe Analysis (1972).

    Google Scholar 

  57. J. R. Morrey, Anal Chem., 40, 905 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Goldstein, J.I., Colby, J.W. (1975). Special Techniques in the X-Ray Analysis of Samples. In: Goldstein, J.I., Yakowitz, H. (eds) Practical Scanning Electron Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4422-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4422-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4424-7

  • Online ISBN: 978-1-4613-4422-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics