Advertisement

Entry of Insecticides into Animal Systems

  • Fumio Matsumura

Abstract

The body surface of insects consists of a hard skin known as the cuticle. At first glance it appears that this barrier should be very effective against the entry of insecticides, but there are two main reasons why it is not: (1) the insect exposes a far greater surface area relative to its volume than the mammal, and (2) the insect cuticle is hydrophobic (i.e., lipophilic) so that it can resist desiccation and drowning. Most modern insecticides are apolar and therefore easily penetrate the insect cuticle. Mammalian skin, by contrast, is relatively resistant to the entry of insecticides. As a result, it is common that the acute oral toxicity of an insecticide is much higher in mammals than the contact toxicity, whereas the contact and oral toxicities are almost equal in insects. Though in insects cuticular penetration is usually the major pathway, in some instances insecticides do enter by way of the mouth, repiratory system, and other vulnerable places such as the antennae, eyes, and tarsi.

Keywords

Animal System Cuticular Lipid Acute Oral Toxicity Contact Toxicity Insect Cuticle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, H., and B. G. Gardiner (1967). Nature 214:1338.PubMedCrossRefGoogle Scholar
  2. Ahmed, H., and B. G. Gardiner (1968). Bull. Entomol. Res. 57:651.PubMedCrossRefGoogle Scholar
  3. Alexandrov, W. J., (1935). Acta Zool. 16:1.CrossRefGoogle Scholar
  4. Armstrong, G., F. Bradburg, and H. Standen (1951). Ann. Appl. Biol. 38:555.CrossRefGoogle Scholar
  5. Beament, J. W. L. (1945). J. Exptl. Biol. 21:115.Google Scholar
  6. Benezet, H. J., and A. J. Forgash (1972a). J. Econ. Entomol. 65:53.PubMedGoogle Scholar
  7. Benezet, H. J., and A. J. Forgash (1972b). J. Econ. Entomol. 65:895.PubMedGoogle Scholar
  8. Davison, H., and J. F. Danielli (1952). The Permeability of Natural Membranes. Cambridge University Press, Cambridge.Google Scholar
  9. Dierick, G. F. E. M. (1943). Tijdschr. Plantenziekt. 49:22.CrossRefGoogle Scholar
  10. Ellisor, L. O. (1936). Iowa State Coll. J. Sci. 11:51.Google Scholar
  11. Feldman, R. J., and H. I. Maibach (1970). J. Invest. Dermatol. 54:435.CrossRefGoogle Scholar
  12. Fisher, R. W. (1952). Can. J. Zool. 30:254.CrossRefGoogle Scholar
  13. Gage, J. C. (1968). Brit. J. Ind. Med. 25:304.Google Scholar
  14. Gaines, T. B. (1960). Toxicol. Appl. Pharmacol. 2:88.PubMedCrossRefGoogle Scholar
  15. Gerolt, P. (1969). J. Insect Physiol. 15:563.PubMedCrossRefGoogle Scholar
  16. Hartwell, W. V., G. R. Hayes, Jr., and A. J. Fundses (1964). Arch. Environ. Health 8:820.PubMedGoogle Scholar
  17. Hayes, W. P., and Y.-S. Liu (1947). Ann. Entomol. Soc. Am. 40:401.Google Scholar
  18. Hurst, H. (1940). Nature 145:388.CrossRefGoogle Scholar
  19. Hurst, H. (1943). Trans. Faraday Soc. 39:390 and Nature 152:292.CrossRefGoogle Scholar
  20. Iljinskaya, M. I. (1946). Compt. Rend. Acad. Sci. U.S.S.R. 51:557.Google Scholar
  21. Klinger, H. (1936). Arb. Physiol. Angew. Entomol. 3:49 and 115.Google Scholar
  22. Lees, A. D. (1946). Parasitology 37:1.PubMedCrossRefGoogle Scholar
  23. Lees, A. D. (1947). J. Exptl. Biol. 23:291.Google Scholar
  24. Lewis, C. T. (1965). J. Insect Physiol. 11:683.PubMedCrossRefGoogle Scholar
  25. Lindquist, D. A., and P. A. Dahm (1956). J. Econ. Entomol. 49:579.Google Scholar
  26. Matsumura, F. (1959). The permeability of insect cuticle. M.S. thesis, University of Alberta, Edmonton, Canada.Google Scholar
  27. Matsumura, F. (1963). J. Insect Physiol. 9:207.CrossRefGoogle Scholar
  28. Negherbon, W. O. (1959). Handbook of Toxicology. Vol. 3: Insecticides. Saunders, Philadelphia.Google Scholar
  29. O’Brien, R. D., and C. E. Dannelley (1965). J. Agr. Food Chem. 13:245.CrossRefGoogle Scholar
  30. O’Brien, R. D., and R. W. Fisher (1958). J. Econ. Entomol. 51:169.Google Scholar
  31. O’Kane, W. C., G. L. Walker, H. G. Guy, and O. J. Smith (1933). Tech. Bull. New Hampshire Agr. Expt. Station 54:1.Google Scholar
  32. O’Kane, W. C., L. C. Glover, R. L. Blickle, and B. M. Parker (1940). Tech. Bull. N.H. Agr. Expt. Sta. 74:1.Google Scholar
  33. Olson, W. D., and R. D. O’Brien (1963). J. Insect Physiol. 9:777.CrossRefGoogle Scholar
  34. Pal, R. (1951). Bull. Entomol. Res. 51:121.Google Scholar
  35. Quraishi, M. S., and Z. T. Poonawalla (1969). J. Econ. Entomol. 62:988.PubMedGoogle Scholar
  36. Richards, A. G., and L. K. Cutkomp (1946). Biol. Bull. 90:97.PubMedCrossRefGoogle Scholar
  37. Richards, A. G., and F. M. Korda (1948). Ann. Entomol. Soc. Am. 43:49.Google Scholar
  38. Roy, D. N., S. M. Ghosh, and R. N. Chopra (1943). Ann. Appl. Biol. 30:42.CrossRefGoogle Scholar
  39. Sarkaria; D. S., and R. L. Datton (1949). Trans. Entomol. Soc. Am.. 175:71.Google Scholar
  40. Sternberg, J., C. W. Kearius, and W. N. Bruce (1950). J. Econ. Entomol. 43:214.Google Scholar
  41. Tattersfield, F., C. Potter, and E. M. Gillhem (1947). Bull. Entomol. Res. 37:497.PubMedCrossRefGoogle Scholar
  42. Treherne, J. E. (1957). J. Insect Physiol. 1:178.CrossRefGoogle Scholar
  43. Webb, J. E., and R. A. Green (1946). J. Exptl. Biol. 22:8.Google Scholar
  44. West, L (1967). Arch. Environ. Health 15:97.PubMedGoogle Scholar
  45. Wigglesworth, V. B. (1942). Bull. Entomol. Res. 33:205.CrossRefGoogle Scholar
  46. Wigglesworth, V. B. (1945). J. Exptl. Biol. 21:9.Google Scholar
  47. Zavon, M. R., and E. A. Kindel, Jr. (1966). In Organic Pesticides in the Environment. Advances in Chemistry Series 60, American Chemical Society, Washington, D.C., p. 177.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Fumio Matsumura
    • 1
  1. 1.Department of EntomologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations