Chemotherapy pp 95-103 | Cite as

Action of Anticancer Drugs on the Cell Cycle. Chromosome Damage and Differential Stage Sensitivity

  • David Scott


In spite of the fact that the relative sensitivities of different phases of the cell cycle to the cytotoxic effects a large number of anticancer drugs is known1 the mechanisms of differential stage sensitivity are, in general, poorly understood. A better understanding of these mechanisms should allow a more rational approach to the practical application of these drugs. As a cytogeneticist I am struck by the high proportion of anticancer drugs which produce chromosome structural damage; Table 1 gives a list of such drugs taken from a survey by Shaw2 in 197O so it is by now certainly incomplete but is nevertheless an impressive list and includes many anticancer drugs in common use. I hope to show that at least for one class of drugs, the alkylating agents, chromosome aberration frequencies play an important part in determining differential stage sensitivity.


Anticancer Drug Alkylating Agent Chromosome Aberration Tritiated Thymidine Chromosome Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    MADOC-JONES, H. and F. MAURO. In “Handbook of Experimental Pharmacology Vol 38(1)” p.205. Eds. A.C. Sartorelli and D.G. Johns. Springer-Verlag, Berlin, 1974.Google Scholar
  2. 2).
    SHAW, M.W. Ann.Rev.Med. 21, 409 (1970).PubMedCrossRefGoogle Scholar
  3. 3).
    GROTE, S.J. and S.H. REVELL. Current Topics in Radiation Research 7, 303 (1972).Google Scholar
  4. 4).
    CARRANO, A.V. Mutation Res. 17, 355 (1973).PubMedCrossRefGoogle Scholar
  5. 5).
    SCOTT, D., M. FOX and B.W. FOX. Mutation Res. 22, 207 (1974).PubMedCrossRefGoogle Scholar
  6. 6).
    KOLLER, P.C. Mutation Res. 8, 199 (1969).PubMedCrossRefGoogle Scholar
  7. 7).
    FOX, B.W. Intern.J.Cancer 4, 54 (1969).CrossRefGoogle Scholar
  8. 8).
    FOX, M. and B.W. FOX. Chem.-Biol. Interactions 4, 363 (1971/2).CrossRefGoogle Scholar
  9. 9).
    ROSS, W.C.J. Biological Alkylating Agents. Butterworth and Co. London, 1962.Google Scholar
  10. 10).
    TERASIMA, T. and L.J. TOLMACH. Biophys.J. 3, 11 (1963).PubMedCrossRefGoogle Scholar
  11. 11).
    SCOTT, D. and T.R.L. BIGGER. In “Chromosomes Today Vol 3” p162. Eds. C.D. Darlington and K.R. Lewis. Longmans, London, 1972.Google Scholar
  12. 12).
    ROBERTS, J.J., T.P. BRENT and A.R. CRATHORN. In “The interaction of drugs and subcellular components in animal cells” p5. Ed. P.N. Campbell. Churchill Limited, London,(1968).Google Scholar
  13. 13).
    MAURO, F. and M.M. ELKIND. Cancer Res. 28, 1150 (1968).PubMedGoogle Scholar
  14. 14).
    EVANS, H.J. and D. SCOTT. Proc.Roy.Soc. B 173, 491 (1969).Google Scholar
  15. 15).
    STURELID, S. Hereditas 68, 255 (1971).PubMedCrossRefGoogle Scholar
  16. 16).
    KELLY, F. and M. LEGATOR. Mutation Res. 10, 237 (1970).PubMedCrossRefGoogle Scholar
  17. 17).
    PAINTER, R.B. Current Topics in Radiation Res. Vol 7, p 45 Eds. M. Ebert and A. Howard. North-Holland, Amsterdam, (1970).Google Scholar
  18. 18).
    REID, B.D. and I.G. WALKER. Biochem.Biophys.Acta. 179, 179 (1969).PubMedGoogle Scholar
  19. 19).
    SCOTT, D. Unpublished observations.Google Scholar
  20. 20).
    LEHMAN, A.R. Life Sciences 15, 2005 (1975).CrossRefGoogle Scholar
  21. 21).
    KIHLMAN, B.A., S. STURELID, B. HARTLEY-ASP and K. NILSSON. Mutation Res. 26, 105 (1974).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • David Scott
    • 1
  1. 1.Paterson LaboratoriesChristie Hospital & Holt Radium InstituteManchesterUK

Personalised recommendations