Skip to main content

Radio Frequency Spectroscopy with a Fast Atomic Beam

  • Chapter
Beam-Foil Spectroscopy
  • 92 Accesses

Abstract

Measurements of the fine structure of the excited states of simple atoms give important tests of basic theory and important sources for determination of the fundamental constants.1,2 The most familiar such system is the n=2 state of atomic hydrogen — the 2S1/22P1/2 Lamb shift interval provides a fundamental test of quantum electrodynamics, the 2P3/22P1/2 fine structure interval gives a theoretically unambiguous source for the determination of the fine structure constant. The most precise measurements of these intervals have come from atomic beam experiments which depend critically on the metastability of the 22S1/2 state. In the atomic beam technique developed by Lamb and coworkers in their pioneering measurements of the hydrogen fine structure, hydrogen atoms produced by thermal dissociation in a hot oven are excited by a crossed electron beam into the metastable 2S1/2 state. They then pass through a microwave cavity located in a magnetic field and are detected through the ejection of electrons from a wire. When the magnetic field is such that the radiofrequency field produces transitions to the 2P1/2 or 2P3/2 states, number of metastable atoms striking the wire decreases.

The preparation of this manuscript was supported in part by NSF Grant MPS 74–13728.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. N. Taylor, W. H. Parker and D. N. Langenberg, Rev. Mod. Phys. 41, 375 (1969).

    Article  ADS  Google Scholar 

  2. B. N. Taylor and E. Richard Cohen, Proceedings of the Fifth International Conference on Atomic Masses and Fundamental Constants (AMC0–5), Paris, June 2–6, 1975.

    Google Scholar 

  3. For a general review of the conventional techniques see R. T. Robiscoe in Cargese Lectures in Physics, edited by M. Levy (Gordon and Breach, New York, 1968), Vol. 2, p. 3.

    Google Scholar 

  4. S. Triebwasser, E. S. Dayhoff and W. E. Lamb, Jr., Phys. Rev. 89, 98 (1953).

    Article  ADS  Google Scholar 

  5. R. T. Robiscoe and T. W. Shyn, Phys. Rev. Lett. 24, 559 (1970).

    Article  ADS  Google Scholar 

  6. T. W. Shyn, W. L. Williams, R. T. Robiscoe and T. Rebane, Phys. Rev. Lett. 22, 1273 (1969).

    Article  ADS  Google Scholar 

  7. B. L. Cosens and T. V. Vorburger, Phys. Rev. Lett. 23, 1273 (1969).

    Article  ADS  Google Scholar 

  8. For an interesting modification of the technique see H. Kleinpoppen, Z. Physik 164, 174 (1961).

    Article  ADS  Google Scholar 

  9. S. L. Kaufman, W. E. Lamb, Jr., K. R. Lea, and M. Leventhal, Phys. Rev. Lett. 22, 507 (1969).

    Article  ADS  Google Scholar 

  10. R. A. Brown and F. M. Pipkin, Annals of Physics 80, 479 (1973).

    Article  ADS  Google Scholar 

  11. V. W. Hughes, in Quantum Electronics, edited by C. H. Townes (Columbia U. P., New York, 1967), p. 562

    Google Scholar 

  12. N. F. Ramsey, Molecular Beams, (Oxford U. P., London, 1956), p. 124.

    Google Scholar 

  13. C. W. Fabjan and F. M. Pipkin, Phys. Lett. 36A, 69 (1971).

    ADS  Google Scholar 

  14. C. W. Fabjan and F. M. Pipkin, Phys. Rev. A 6, 556 (1972).

    ADS  Google Scholar 

  15. C. W. Fabjan, F. M. Pipkin and M. Silverman, Phys. Rev. Lett. 26, 347 (1971)

    Article  ADS  Google Scholar 

  16. S. Churassy, M. L. Gaillard and J. D. Silver, Phys. Rev. Lett. 33, 185 (1974).

    Article  ADS  Google Scholar 

  17. S. R. Lundeen, P. E. Jessop and F. M. Pipkin, Phys. Rev. Lett. 34, 377 (1975).

    Article  ADS  Google Scholar 

  18. S. R. Lundeen and F. M. Pipkin, Phys. Rev. Lett. 34, 1368 (1975).

    Article  ADS  Google Scholar 

  19. M. P. Silverman and F. M. Pipkin, J. Phys. B7, 704 (1974).

    ADS  Google Scholar 

  20. M. P. Silverman and F. M. Pipkin, J. Phys. B7 730 (1974).

    ADS  Google Scholar 

  21. M. P. Silverman and F. M. Pipkin, J. Phys. B7, 747 (1974).

    ADS  Google Scholar 

  22. S. R. Lundeen, Y. L. Yung and F. M. Pipkin, Nucl. Instrum. Methods 110, 355 (1973).

    Article  ADS  Google Scholar 

  23. S. R. Lundeen, thesis, Harvard University (unpublished).

    Google Scholar 

  24. P. B. Kramer, S. R. Lundeen, B. O. Clark, and F. M. Pipkin, Phys. Rev. Lett. 32, 675 (1974).

    Article  ADS  Google Scholar 

  25. H. J. Andrä, A. Gaupp and W. Wittmann, Phys. Rev. Lett. 31, 501 (1973).

    Article  ADS  Google Scholar 

  26. H. J. Andrä in Atomic Physics 4, edited by G. Zu Putlitz, E. W. Weber and A. Winnacker (Plenum Press, New York and London, 1975),P. 635–649.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Pipkin, F.M. (1976). Radio Frequency Spectroscopy with a Fast Atomic Beam. In: Sellin, I.A., Pegg, D.J. (eds) Beam-Foil Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4340-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4340-0_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4342-4

  • Online ISBN: 978-1-4613-4340-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics