Radio Frequency Spectroscopy with a Fast Atomic Beam

  • Francis M. Pipkin


Measurements of the fine structure of the excited states of simple atoms give important tests of basic theory and important sources for determination of the fundamental constants.1,2 The most familiar such system is the n=2 state of atomic hydrogen — the 2S1/22P1/2 Lamb shift interval provides a fundamental test of quantum electrodynamics, the 2P3/22P1/2 fine structure interval gives a theoretically unambiguous source for the determination of the fine structure constant. The most precise measurements of these intervals have come from atomic beam experiments which depend critically on the metastability of the 22S1/2 state. In the atomic beam technique developed by Lamb and coworkers in their pioneering measurements of the hydrogen fine structure, hydrogen atoms produced by thermal dissociation in a hot oven are excited by a crossed electron beam into the metastable 2S1/2 state. They then pass through a microwave cavity located in a magnetic field and are detected through the ejection of electrons from a wire. When the magnetic field is such that the radiofrequency field produces transitions to the 2P1/2 or 2P3/2 states, number of metastable atoms striking the wire decreases.


Line Profile Atomic Beam Principal Quantum Number Lamb Shift Fine Structure Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. N. Taylor, W. H. Parker and D. N. Langenberg, Rev. Mod. Phys. 41, 375 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    B. N. Taylor and E. Richard Cohen, Proceedings of the Fifth International Conference on Atomic Masses and Fundamental Constants (AMC0–5), Paris, June 2–6, 1975.Google Scholar
  3. 3.
    For a general review of the conventional techniques see R. T. Robiscoe in Cargese Lectures in Physics, edited by M. Levy (Gordon and Breach, New York, 1968), Vol. 2, p. 3.Google Scholar
  4. 4.
    S. Triebwasser, E. S. Dayhoff and W. E. Lamb, Jr., Phys. Rev. 89, 98 (1953).ADSCrossRefGoogle Scholar
  5. 5.
    R. T. Robiscoe and T. W. Shyn, Phys. Rev. Lett. 24, 559 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    T. W. Shyn, W. L. Williams, R. T. Robiscoe and T. Rebane, Phys. Rev. Lett. 22, 1273 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    B. L. Cosens and T. V. Vorburger, Phys. Rev. Lett. 23, 1273 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    For an interesting modification of the technique see H. Kleinpoppen, Z. Physik 164, 174 (1961).ADSCrossRefGoogle Scholar
  9. 9.
    S. L. Kaufman, W. E. Lamb, Jr., K. R. Lea, and M. Leventhal, Phys. Rev. Lett. 22, 507 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    R. A. Brown and F. M. Pipkin, Annals of Physics 80, 479 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    V. W. Hughes, in Quantum Electronics, edited by C. H. Townes (Columbia U. P., New York, 1967), p. 562Google Scholar
  12. 12.
    N. F. Ramsey, Molecular Beams, (Oxford U. P., London, 1956), p. 124.Google Scholar
  13. 13.
    C. W. Fabjan and F. M. Pipkin, Phys. Lett. 36A, 69 (1971).ADSGoogle Scholar
  14. 14.
    C. W. Fabjan and F. M. Pipkin, Phys. Rev. A 6, 556 (1972).ADSGoogle Scholar
  15. 15.
    C. W. Fabjan, F. M. Pipkin and M. Silverman, Phys. Rev. Lett. 26, 347 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    S. Churassy, M. L. Gaillard and J. D. Silver, Phys. Rev. Lett. 33, 185 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    S. R. Lundeen, P. E. Jessop and F. M. Pipkin, Phys. Rev. Lett. 34, 377 (1975).ADSCrossRefGoogle Scholar
  18. 18.
    S. R. Lundeen and F. M. Pipkin, Phys. Rev. Lett. 34, 1368 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    M. P. Silverman and F. M. Pipkin, J. Phys. B7, 704 (1974).ADSGoogle Scholar
  20. 20.
    M. P. Silverman and F. M. Pipkin, J. Phys. B7 730 (1974).ADSGoogle Scholar
  21. 21.
    M. P. Silverman and F. M. Pipkin, J. Phys. B7, 747 (1974).ADSGoogle Scholar
  22. 22.
    S. R. Lundeen, Y. L. Yung and F. M. Pipkin, Nucl. Instrum. Methods 110, 355 (1973).ADSCrossRefGoogle Scholar
  23. 23.
    S. R. Lundeen, thesis, Harvard University (unpublished).Google Scholar
  24. 24.
    P. B. Kramer, S. R. Lundeen, B. O. Clark, and F. M. Pipkin, Phys. Rev. Lett. 32, 675 (1974).ADSCrossRefGoogle Scholar
  25. 25.
    H. J. Andrä, A. Gaupp and W. Wittmann, Phys. Rev. Lett. 31, 501 (1973).ADSCrossRefGoogle Scholar
  26. 26.
    H. J. Andrä in Atomic Physics 4, edited by G. Zu Putlitz, E. W. Weber and A. Winnacker (Plenum Press, New York and London, 1975),P. 635–649.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Francis M. Pipkin
    • 1
  1. 1.Lyman LaboratoryHarvard UniversityCambridgeUSA

Personalised recommendations