Advertisement

Neurohumoral Control of Blood Vessels

  • S. Baez
  • S. M. Feldman
  • P. M. Gootman
  • Burton M. Altura
  • E. T. Angelakos
  • J. D. Irvin
  • J. L. Osterholm
  • Frederick N. Miller
  • David L. Wiegman
  • Michael J. Devaney
  • Patrick D. Harris
  • J. A. Lipp
  • Harvey R. Weiss
  • Stephen F. Flaim
  • Arnold C. L. Hsieh
  • E. N. Terry
  • R. H. Clauss
  • L. Rouen
  • W. Redisch
  • Norman Barwin
  • R. L. Coulson
  • K. M. Borow
Chapter

Abstract

Renkin and Rosell (1962) reported specific sites for eNS control of arterioles and precapillary sphincters. Gootman et al. (1973) showed that all segments of precapillary microvessel and sphincter can respond to eNS stimulation. However, precapillary arterioles (metarterioles) and precapillary sphincters failed to respond to supramaximal stimulation of paravascular nerves in rat mesentery (Furness and Marshall, 1974). In the present experiment, responses of the larger consecutive segments of arterioles (Art) were measured during electrical stimulation of vasoactive eNS sites in nine rats with chronically implanted unipolar electrodes. Currents were for maximal constriction or lumen closure of precapillary sphincter (Pc sph) and/or immediately preceding metarteriole (Met): 0.08–0.15 mA (10- strains, 100-μs pulses 5–100 Hz). Under pentobarbital sodium (25 mg/kg, i.m.), responses of microvessels were measured by image-splitting methods in mesoappendix in six rats,cremaster in two rats, and both in one. In all experiments, stimulation resulted in blood pressure elevation (112.6 ± 17.6% to 165.2 ± 18.5% mm Hg, mean and standard deviation) and constriction of three consecutive segments of precapillary vessels and sphincter: 10.5 ± 9.3% for Artl (43.4 ± 8.8 μm, ID), 40.0 ± 26.6% for All (20.4 ± 3.7 μm, ID), 70.3 ± 24.6% for Met (11.4 ± 3.7 μm, ID), and 75.5 ± 20.2% for Pc sph (7.5 ± 1.3 μm, ID). Stimulation characteristically increased (×3) vasomotor activity of Pc sph and Met, but infrequently increased that of larger arterioles at currents used.

Keywords

United States Public Health Adrenergic Innervation Aortic Strip Countercurrent Exchange Oral Contraceptive Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Furness J. B., and Marshall J. M., 1974, Correlation of the directly observed responses of mesenteric vessels of the rat to nerve stimulation and noradrenaline with the distribution of adrenergic nerves, J. Physiol. (London) 239:75.Google Scholar
  2. Gootman P. M., Baez S., and Feldman S. M., 1973, Microcirculatory responses to central neural stimulation in the rat, Am. J. Physiol. 225:1375.PubMedGoogle Scholar
  3. Renkin E., and Rosell S., 1962, Independent sympathetic vasoconstrictor innervation of arterioles and precapillary sphincter, Acta Physiol. Scand. 54:381.PubMedCrossRefGoogle Scholar

References

  1. Altura B. M., 1971, Chemical and humoral regulation of blood flow through the precapillary sphincter, Microvasc. Res. 3:361.CrossRefGoogle Scholar
  2. Altura B. M., 1972x, Can metarteriolar vessels occlude their lumens in response to vasoactive substances? Proc. Soc. Exp. Biol. Med. 140:1270.Google Scholar
  3. Altura B. M., 1972b, Sex as a factor influencing responsiveness of arterioles to catecholamines, Eur. J. Pharmacol. 20:261.CrossRefGoogle Scholar
  4. Altura, B. M., 1975, Pharmacologic effects of alpha-methyl DOPA, alpha-methylnorepinephrine and octopamine on rat arteriolar, arterial and terminal vascular smooth muscle, Circ. Res. Suppl. 36: 1-233.Google Scholar

References

  1. Landis, E. M., and Pappenheimer, J. R., 1963, Exchange of substances through the capillary walls, in: Handbook of Physiology, Section 2: Circulation, Vol. 11 (W. F. Hamilton and P. Dow, eds.), pp. 1018=1019, American Physiological Society, Washington, D.C.Google Scholar
  2. Nicoll, P. A., and Webb, R. L., 1955, Vascular patterns and active vasomotion as determiners of flow through minute vessels, Angiology 6:291.Google Scholar

References

  1. Agostoni, A., Berfasconi, C., Gerli, G. C., Luzzana, M., and Rossi-Bernardi, L., 1973, Oxygen affinity and electrolyte distribution of human blood: Changes induced by propranolol, Science 182:300.Google Scholar
  2. Honig, C. R., Frierson, J. L., and Patterson, J. L., 1970, Comparison of neural controls of resistance and capillary density in resting muscle, Am. J. Physiol. 218:937.Google Scholar
  3. Honig, C. R., Frierson, J. L., and Nelson, C. N., 1971, OZ transport and Vo2 in resting muscle: Significance for tissue capillary exchange, Am. J. Physiol. 220:357.Google Scholar
  4. Whalen, W. J., Buerk, D., and Thuning, C. A., 1973, Blood flow limited oxygen consumption in resting skeletal muscle, Am. J. Physiol. 224:763.Google Scholar

References

  1. Flaim, S. F., and Hsieh, A. C. L., 1975, Reduced sensitivity to norepinephrine in isolated, perfused carotid artery from cold-acclimated rabbits, Fed. Proc. 34(3):477.Google Scholar
  2. Honda, N., Judy, W. V., and Carlson, L. D., 1962, Effects of adrenaline and noradrenaline on ear vessels in cold-and warm-adapted rabbits, J. Appl. Physiol. 17:754. Owen, T. L., 1972, Norepinephrine sensitivity of ear artery strips from cold-and warmacclimated rabbits, doctoral dissertation, Department of Human Physiology, School of Medicine, University of California at Davis.Google Scholar

References

  1. Algire, G. H., and Merwin, R. M., 1955, Vascular patterns in tissues and grafts within transparent chambers in mice, Angiology 6:311.Google Scholar
  2. Cardon, S. Z., Oestermayer, S. F., and Bloch, E. H., 1970, Effect of oxygen on cyclic red blood cell flow in anaesthetized mammalian striated muscle as determined by microscopy, Microvasc. Res. 2:67.Google Scholar
  3. Chambers, R., and Zweifach, B. W., 1944, Topography and function of the mesenteric circulation, Am. J. Anat. 75:173.Google Scholar
  4. Clauss, R. H., Terry, E. N., and Redisch, W., 1969, Inhibition of vasoconstrictive responses to hypovolemic shock by alpha-methyl-tyrosine, Circulation 39:58. Cobbold, A., Folkow, B., Kjellmer, I., and Mellander, S., 1963, Nervous and local chemical control of precapillary sphincters in skeletal muscle as measured by changes in filtration coefficient, Acta. Physiol. Scand. 57:180.Google Scholar
  5. Hackel, D. B., Martin, A. M., Spach, M. S., and Sieker, R. O., 1964, Hemorrhagic shock in dogs, Arch. Pathol. 77:575.Google Scholar
  6. Lewis, D. H., and Mellander, S., 1962, Competitive effects of sympathetic control and tissue metabolites on resistance and capacitance vessels and capillary filtration in skeletal muscle, Acta Physiol. Scand. 56:162.Google Scholar
  7. Mellander, S., 1971, Interaction of local and nervous factors in vascular control, Angiology 8:187.Google Scholar
  8. Terry, E. N., Clauss, R. H., Rouen, L. R., and Redisch, W., 1973, Catecholamines and vasomotion, VASA 15:3;222.Google Scholar

References

  1. Goodrich, S. M., and Wood, J. E., 1964, Peripheral venous distensibility and velocity of venous blood flow during pregnancy or during oral contraceptive therapy, Am. J. Obstet. Gynecol. 90:740.Google Scholar
  2. Mullane, D. J., 1952, Varicose veins of pregnancy, Am. J. Obstet. Gynecol. 63:620.Google Scholar

References

  1. Coulson R. L., and Rusy B. F., 1973, A system for assessing mechanical performance, heat production, and oxygen utilization of isolated perfused whole hearts, Cardiovasc. Res. 7:859.PubMedCrossRefGoogle Scholar
  2. Gorlin R., Brachfeld N., MaCleod C., and Bopp R., 1959, Effect of nitroglycerine on the coronary circulation in patients with coronary artery disease or increased left ventricular work, Circulation 19:705.PubMedCrossRefGoogle Scholar
  3. Herman A. G., Bogaert M. G., and Schaepdryver A. F., 1971, Effect of Nitroglycerine at different degrees of contraction of the rabbit aortic strip. Arch. Int. Pharmacodyn. Ther. 190:407.PubMedGoogle Scholar
  4. Honig C. R., Tenney S. M., and Gable P. V., 1960, The mechanism of cardiovascular action on nitroglycerine, Am. J. Med. 39:910.CrossRefGoogle Scholar
  5. Mason D. T., and Braunwald E., 1965, The effect of nitroglycerine and amyl nitrite on arteriolar and venous tone in the human forearm, Circulation 32:755.PubMedCrossRefGoogle Scholar
  6. Smith I. C. H., 1972, Energetics of activation in frog and toad muscle, J. Physiol. (London) 220:583.Google Scholar
  7. Williams J. F., Jr., Glick G., and Braunwald E., 1965, Studies on cardiac dimensions in intact unanesthetized man. V. Effects of nitroglycerine, Circulation 32:767.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • S. Baez
    • 3
    • 4
  • S. M. Feldman
    • 3
    • 4
  • P. M. Gootman
    • 3
    • 4
  • Burton M. Altura
    • 5
  • E. T. Angelakos
    • 6
  • J. D. Irvin
    • 6
  • J. L. Osterholm
    • 6
  • Frederick N. Miller
    • 7
  • David L. Wiegman
    • 7
  • Michael J. Devaney
    • 7
  • Patrick D. Harris
    • 7
  • J. A. Lipp
    • 1
  • Harvey R. Weiss
    • 1
  • Stephen F. Flaim
    • 2
  • Arnold C. L. Hsieh
    • 8
  • E. N. Terry
    • 9
  • R. H. Clauss
    • 9
  • L. Rouen
    • 9
  • W. Redisch
    • 9
  • Norman Barwin
    • 10
    • 11
  • R. L. Coulson
    • 12
  • K. M. Borow
    • 12
  1. 1.Department of PhysiologyCMDNJ-Rutgers Medical SchoolPiscatawayUSA
  2. 2.The Division of Cardiology, Milton S. Hershey Medical CenterPennsylvania State UniversityHersheyUSA
  3. 3.Albert Einstein College of MedicineNew York UniversityBrooklynUSA
  4. 4.Downstate Medical CenterBrooklynUSA
  5. 5.Department of Physiology, State University of New YorkDownstate Medical CenterBrooklynUSA
  6. 6.Hahnemann Medical CollegePhiladelphiaUSA
  7. 7.Dalton Research Center and the Departments of Pharmacology, Physiology, and Electrical EngineeringUniversity of MissouriColumbiaUSA
  8. 8.Department of Human Physiology, School of MedicineUniversity of CaliforniaDavisUSA
  9. 9.Departments of Medicine and SurgeryNew York Medical College Metropolitan Hospital CenterNew YorkUSA
  10. 10.Department of PhysiologyThe Queen’s University of BelfastOttawaCanada
  11. 11.Department of Obstetrics and Gynecology, Ottawa UniversityOttawa General HospitalOttawaCanada
  12. 12.Cardiology SectionTemple University Health Sciences CenterPhiladelphiaUSA

Personalised recommendations