Advertisement

Methods for the Study of Cyclic AMP Metabolism in Intact Cells

  • John P. Perkins
  • Ying-Fu Su
  • Gary L. Johnson
  • Rainer Ortmann
  • Ben H. Leichtling

Abstract

The concentration of adenosine 3′:5′-monophosphate (cAMP) in cells is determined predominantly by the relative rates of synthesis by adenylate cyclase and degradation by phosphodiesterase; although other contributing factors may exist. For example, a significant portion of the cAMP content under basal conditions may exist in a protein-bound form that is not susceptible to hydrolysis by phosphodiesterase activity (1). Also, in certain cases the rate of secretion of cAMP from hormonally-stimulated cells can be a major factor in determining the intracellular content (2, 3). It is usually assumed that hormones elicit a rise in cellular cAMP levels by activation of adenylate cyclase. However, if some degree of turnover of cAMP occurs under basal conditions, then theoretically, the steady state level of cAMP could be raised by either an increase in its rate of synthesis or a decrease in its rate of degradation.

Keywords

Intact Cell Steady State Level Percentage Conversion Phosphodiesterase Activity cAMP Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Dea, R.F., Haddox, M.K. and Goldberg, N.D. (1971) J. Biol.Chem. 246, 6183.PubMedGoogle Scholar
  2. 2.
    Kelly, L.A., Hall, M.S. and Butcher, R.W. (1974) J. Biol. Chem. 249, 5182.PubMedGoogle Scholar
  3. 3.
    Davoren, P.R. and Sutherland, E.W. (1963) J. Biol. Chem. 238, 3009.PubMedGoogle Scholar
  4. 4.
    Perkins, J.P. (1973) Adenyl Cyclase in Advances in Cyclic Nucleotide Research Vol. 3 pp. 1–64, eds. P. Greengard and G.A. Robison, Raven Press, New York.Google Scholar
  5. 5.
    Loten, E.G. and Sneyd, J.G.T. (1970) Biochem. J. 120, 187.PubMedGoogle Scholar
  6. 6.
    Armstrong, K.J., Stouffer, J.E., Vanlnwegen, R.G., Thompson, W.J. and Robison, G.A. (1974) J. Biol. Chem. 249, 4226.PubMedGoogle Scholar
  7. 7.
    D’Armiento, M., Johnson, G.S. and Pastan, I. (1972) Proc. Nat. Acad. Sci. 69, 459.PubMedCrossRefGoogle Scholar
  8. 8.
    Brooker, G., Thomas, L., Jr. and Appleman, M.M. (1968) Biochemistry 7, 4177.PubMedCrossRefGoogle Scholar
  9. 9.
    Thompson, W.J. and Appleman, M.M. (1971) Biochemistry 10, 311.PubMedCrossRefGoogle Scholar
  10. 10.
    Butcher, R.W., Ho, R.J., Meng, H.C. and Sutherland, E.W. (1965) J. Biol. Chem. 240, 4515.PubMedGoogle Scholar
  11. 11.
    Goldberg, N.D., Larner, J., Sasko, H. and O’Toole, A.G, (1969) Anal. Biochem. 28, 523.PubMedCrossRefGoogle Scholar
  12. 12.
    Gilman, A.G. (1970) Proc. Nat. Acad. Sci. 67, 305.PubMedCrossRefGoogle Scholar
  13. 13.
    Steiner, A.L., Kipnis, D.M., Utiger, R. and Parker, C. (1969) Proc. Nat. Acad. Sci. 64, 367.PubMedCrossRefGoogle Scholar
  14. 14.
    Greengard, P. and Robison, G.A. eds. (1972) New Assay Methods for Cyclic Nucleotides in Advances in Cyclic Nucleotide Research Vol. 2, Raven Press, New York.Google Scholar
  15. 15.
    Krebs, E.G. (1972) Protein Kinases in Current Topics in Cellular Regulation Vol. 5, eds. Horecker, B.L. and Stadtman, E.R. pp. 99–133, Academic Press, New York.Google Scholar
  16. 16.
    Kuo, J.F. and DeRenzo, E.C. (1969) J. Biol. Chem. 244, 2252.PubMedGoogle Scholar
  17. 17.
    Shimizu, H., Daly, J.W. and Creveling, C.R. (1969) J. Neurochem. 16, 1609.PubMedCrossRefGoogle Scholar
  18. 18.
    Clark, R.B. and Perkins, J.P. (1971) Proc. Nat. Acad. Sci. 68, 2757.PubMedCrossRefGoogle Scholar
  19. 19.
    Clark, R.B., Su, Y-F., Gross, R. and Perkins, J.P. (1974) J. Biol. Chem. 249, 5296.PubMedGoogle Scholar
  20. 20.
    Clark, R.B., Su, Y-F., Ortmann, R., Cubeddu, L.X., Johnson, G.L. and Perkins, J.P. (1975) Metabolism 24, 343.PubMedCrossRefGoogle Scholar
  21. 21.
    Shimizu, H. and Daly, J.W. (1970) Biochim. Biophys. Acta. 222, 465.PubMedGoogle Scholar
  22. 22.
    Perkins, J.P. and Moore, M.M. (1973) J. Pharmacol. Exp. Therap. 185, 371.Google Scholar
  23. 23.
    Perkins, J.P. and Moore, M.M. (1973) Mol. Pharmacol. 9, 774.PubMedGoogle Scholar
  24. 24.
    Saloman, Y., Londos, C. and Rodbell, M. (1974) Biochem. 58, 451.Google Scholar
  25. 25.
    Su, Y-F., Cubeddu, L.X. and Perkins, J.P. (1975)Google Scholar
  26. 26.
    Su, Y-F., Johnson, G.L., Cubeddu, L.X., Ortmann, R. and Perkins, J.P. (1975)Google Scholar
  27. 27.
    Leichtling, B., Drotar, A., Ortmann, R. and Perkins, J.P. (1975)Google Scholar
  28. 28.
    Stanley, P.E. and Williams, S.G. (1969) Anal. Biochem. 29, 381.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • John P. Perkins
    • 1
  • Ying-Fu Su
    • 1
  • Gary L. Johnson
    • 1
  • Rainer Ortmann
    • 1
  • Ben H. Leichtling
    • 1
  1. 1.Department of PharmacologyUniversity of Colorado Medical SchoolDenverUSA

Personalised recommendations