Biochemical Dissection of the Cerebellum—Functional Properties of the “Glomerulus Particles”

  • J. E. Wilson
  • G. P. Wilkin
  • Robert Balázs

Abstract

Chapters 21(i)–21(iii) have provided a description of the glomerulus-particle preparation in terms of ultrastructure and enzymic composition. This chapter concerns the functional capabilities of these preparations.

Keywords

Lactate Rubber Glycine Serine Pyruvate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balázs, R., Hajós, F., Johnson, A. L., Reynierse, G. L. A., Tapia, R., and Wilkin, G. P., 1975, Subcellular fractionation of rat cerebellum: An electron microscopic and biochemical investigation. III. Isolation of large fragments of the cerebellar glomeruli, Brain Res. 86: 17–30.CrossRefGoogle Scholar
  2. Bennett, J. P., Logan, W. J., and Snyder, S. H., 1973, Amino acids as central nervous transmitters: The influence of ions, amino acid analogues and ontogeny on transport systems for L-glutamic and L-aspartic acids and glycine into central nervous synaptosomes of the rat, J. Neurochem. 21: 1533–1550.CrossRefGoogle Scholar
  3. Bisti, S., Iosif, G., and Strata, P., 1971, Suppression of inhibition in the cerebellar cortex by picrotoxin and bicuculline, Brain Res. 28: 591–593.CrossRefGoogle Scholar
  4. Cotman, C., Herschman, H., and Taylor, D., 1971, Subcellular fractionation of cultured glial cells, J. Neurobiol. 2: 169–180.CrossRefGoogle Scholar
  5. Diamond, I. A., and Fishman, R. A., 1973, High affinity transport of 2-Deoxyglucose in isolated synaptic endings, Nature (London) 242: 122–123.CrossRefGoogle Scholar
  6. Eccles, J. C., Ito, M., and Szentdgothai, S., 1967, “The Cerebellum as a Neuronal Machine,” Springer-Verlag, Berlin.Google Scholar
  7. Hajós, F., Tapia, R., Wilkin, G., Johnson, A. L., and Balázs, R., 1974, Subcellular fractionation of rat cerebellum: An electron microscopic and biochemical investigation. I. Preservation of large fragments of the cerebellar glomeruli, Brain Res. 70: 261–279.CrossRefGoogle Scholar
  8. Heaton, G. M., and Bachelard, H. S., 1973, The kinetic properties of hexose transport into synaptosomes from guinea pig cerebral cortex, J. Neurochem. 21: 1099–1108.CrossRefGoogle Scholar
  9. Hohorst, H.-J., 1968, in “Methods of Enzymatic Analysis. L-(+)-Lactate-Determination with Lactic Dehydrogenase and DPN” (H. U. Bergmeyer, ed.) pp. 266–270, Academic Press, New York and London.Google Scholar
  10. Iversen, L. L., and Bloom, F. E., 1972, Studies of the uptake of [3H]-GABA and [3H]-Glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res. 41: 131–143.CrossRefGoogle Scholar
  11. Johnston, G. A. R., and Iversen, L. L., 1971, Glycine uptake in rat central nervous system slices and homogenates: Evidence for different uptake systems in spinal cord and cerebral cortex, J. Neurochem. 18: 1951–1961.CrossRefGoogle Scholar
  12. Levi, G., and Raiteri, M., 1973, GAB A and glutamate uptake by subcellular fractions enriched in synaptosomes: Critical evaluation of some methodological aspects, Brain Res. 57: 165–185.CrossRefGoogle Scholar
  13. Levi, F., and Raiteri, M., 1974, Exchange of neurotransmitter amino acid at nerve endings can simulate high affinity uptake, Nature (London) 250: 735–737.CrossRefGoogle Scholar
  14. Logan, W. J., and Snyder, S. H., 1972, High affinity uptake systems for glycine, glutamine and aspartic acids into synaptosomes of rat central nervous tissue, Brain Res. 42: 413–431.CrossRefGoogle Scholar
  15. McLaughlin, B. J., Wood, J. G., Saite, K., Barber, R., Vaughn, J. E., Roberts, E., and Wu, J.-Y., 1974, The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum, Brain Res. 76: 377–391.CrossRefGoogle Scholar
  16. Palay, S. L., and Chan-Palay, V., 1974, “Cerebellar Cortex, Cytology and Organization,” Springer-Verlag, New York.CrossRefGoogle Scholar
  17. Wilkin, G. P., Wilson, J. E., Balázs, R., Schon, F., and Kelly, J., 1974, A comparison of GABA uptake into the excitatory and inhibitory nerve terminals of the isolated cerebellar glomerulus, Nature (London), 252: 397–399.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • J. E. Wilson
    • 1
  • G. P. Wilkin
    • 2
  • Robert Balázs
    • 2
  1. 1.Department of BiochemistryMichigan State UniversityEast LansingUSA
  2. 2.MRC Developmental Neurobiology UnitMedical Research Council LaboratoriesCarshalton SurreyEngland

Personalised recommendations