Advertisement

Physiology of CNS Tissues in Culture

  • Stanley M. Crain

Abstract

Small explants (ca. 1 mm3) of fetal rodent CNS tissues can form characteristic synaptic networks that generate progressively more complex organotypic bioelectric activities as they mature in long-term cultures (Crain, 1966, 1970, 1974a, 1975). CNS explants provide valuable model systems for correlative cytologic, electrophysiologic, and biochemical analyses of brain functions under conditions that permit flexible manipulations of the physicochemical environment of the neural tissues. In addition to relatively unspecific discharges of complex synaptically organized arrays of internuncial neurons in various CNS explants, e.g., cord, brainstem, cerebrum (Crain, 1966), more recent studies have demonstrated the development in vitro of a remarkable degree of specificity in the bioelectric discharge patterns and pharmacologic sensitivities of particular synaptic networks which may also maintain characteristic histologic organization within the ex-planted CNS tissue (Crain and Peterson, 1974a). Organotypic bioelectric activities also develop in small clusters of neurons that reaggregate in vitro after complete dissociation and random dispersion of fetal mouse cerebral cortex, brainstem, or spinal cord cells (Crain and Bornstein, 1972; Nelson and Peacock, 1973; Peacock et al, 1973). Techniques are therefore now available for the preparation of neuronal arrays in cultures of varying complexity, ranging from intact explants, containing a few thousand closely packed neurons and glial cells, down to monolayers of completely separated neurons.

Keywords

Dorsal Root Ganglion Dorsal Root Ganglion Neuron Balance Salt Solution Bioelectric Activity Primary Afferent Depolarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auerbach, A. A., and Purpura, D. P., 1972, Effects of dibutyryl cyclic AMP at giant fiber synapses in the hatchetfish, Fed. Proc. Fed. Am. Soc. Exp. Biol. 31: 403.Google Scholar
  2. Ayala, G. F., Dichter, M., Gumnit, R. J., Matsumoto, H., and Spencer, W. A., 1973, Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggest a neurophysiological explanation of brief paroxysms, Brain Res. 52: 1–17.CrossRefGoogle Scholar
  3. Baer, S. C., and Crain, S. M., 1971, Magnetically coupled micromanipulators for use within a sealed chamber, J. Appl. Physiol. 31: 926–929.Google Scholar
  4. Baker, P. F., Hodgkin, A. L., and Ridgway, E. B., 1971, Depolarization and calcium entry in squid giant axon, J. Physiol. (London) 218: 709–755.Google Scholar
  5. Barker, J. L., and Nicoll, R. A., 1973, The pharmacology and ionic dependency of amino acid responses in the frog spinal cord, J. Physiol. (London) 228: 259–278.Google Scholar
  6. Beer, B., Chasin, M., Clody, D. E., Vogel, J. R., and Horovitz, Z. P., 1972, Cyclic adenosine monophosphate phosphodiesterase in brain: Effect on anxiety, Science 176: 428–430.CrossRefGoogle Scholar
  7. Bell, N. H., Avery, S., Sinha, T., Clark, C. Allen, D. O., and Johnston, C., 1972, Effects of dibutyryl cyclic adenosine 3′,5′-monophosphate and parathyroid extract on calcium and phosphorus metabolism in hypoparathyroidism and pseudohypoparathyroidism, J. Clin. Invest. 51: 816–823.CrossRefGoogle Scholar
  8. Benoist, J. M., Besson, J. M., and Boissier, J. R., 1974, Modification of presynaptic inhibition of various origins by local application of convulsant drugs on cat’s spinal cord, Brain Res. 71: 172–177.CrossRefGoogle Scholar
  9. Birks, R. I., 1966, The fine structure of motor nerve endings at frog myoneural junction, Ann. N.Y. Acad. Sci. 135: 8–19.CrossRefGoogle Scholar
  10. Bornstein, M. B., 1973, Organotypic mammalian central and peripheral nerve tissue, in “Tissue Culture Methods and Applications” (P. F. Kruse and M. K. Patterson, eds.), pp. 86–92, Academic Press, New York.Google Scholar
  11. Bradley, K., Easton, D. M., and Eccles, J. C., 1953, An investigation of primary or direct inhibition, J. Physiol. (London) 122: 474–488.Google Scholar
  12. Breckenridge, B. McL., and Bray, J. J., 1970, Cyclic AMP and nerve function, in “Role of Cyclic AMP in Cell Function” ( P. Greengard and E. Costa, eds.), pp. 325–333, Raven Press, New York.Google Scholar
  13. Bunge, M. B., Bunge, R. P., and Peterson, E. R., 1967, The onset of synapse formation in spinal cord culture as studied by electron microscopy, Brain Res. 6: 728–749.CrossRefGoogle Scholar
  14. Bunge, R. P., Bunge, M. B., and Peterson, E. R., 1965, An electron-microscope study of cultured rat spinal cord, J. Cell Biol 24: 163–191.CrossRefGoogle Scholar
  15. Chasin, M., Harris, D. N., Phillips, M. B., and Hess, S. M., 1972, l-Ethyl-4-(isopropylidenehydrazino)-l-H-pyrazolo-(3,4-b)-pyridine-5-carboxylic acid, ethyl ester, hydrochloride (SQ 20009)-A potent new inhibitor of cyclic 3′,5′-nucleotide phosphodiesterases, Biochem. Pharmacol 21: 2443–2450.Google Scholar
  16. Cheung, W. Y., and Salganicoff, L., 1967, Cyclic 3′,5′-núcleotide phosphodiesterase: Localization and latent activity in rat brain, Nature (London) 214: 90–91.CrossRefGoogle Scholar
  17. Crain, S. M., 1956, Resting and action potentials of cultured chick embryo spinal ganglion cells, J. Comp. Neurol 104: 285–330.CrossRefGoogle Scholar
  18. Crain, S. M., 1964, Development of bioelectric activity during growth of neonatal mouse cerebral cortex in tissue culture, in “Symposium: Neurological and Electroencephalographs Correlative Studies in Infancy” ( P. Kellaway and I. Petersén, eds.), pp. 12–26, Grune & Stratton, New York.Google Scholar
  19. Crain, S. M., 1965, Nervous tissues in vitro: Electrophysiological properties, in “Cells and Tissues in Culture” ( E. N. Willmer, ed.), pp. 422–431, Academic Press, London.Google Scholar
  20. Crain, S. M., 1966, Development of “organotypic” bioelectric activities in central nervous tissues during maturation in culture, Int. Rev. Neurobiol. 9: 1–43.CrossRefGoogle Scholar
  21. Crain, S. M., 1969, Electrical activity in brain tissue developing in culture, in “Basic Mechanisms of the Epilepsies” (H. H. Jasper, A. A. Ward, and A. Pope, eds.), pp. 506–516, Little, Brown, Boston.Google Scholar
  22. Crain, S. M., 1970, Tissue culture studies in developing brain, in “Developmental Neurobiology” (W. A. Himwich, ed.), pp. 165–196, C. C. Thomas, Springfield, Ill.Google Scholar
  23. Crain, S. M., 1971, Intracellular recordings suggesting synaptic functions in chick embryo spinal sensory ganglion cells isolated in vitro, Brain Res. 26: 188–191.CrossRefGoogle Scholar
  24. Crain, S. M., 1973, Microelectrode recording in brain tissue cultures, in “Methods in Physiological Psychology,” Vol. 1, “Bioelectric Recording Techniques: Cellular Processes and Brain Potentials” ( R. F. Thompson and M. M. Patterson, eds.), pp. 39–75, Academic Press, New York.Google Scholar
  25. Crain, S. M., 1974a, Tissue culture models of developing brain functions, in “Studies on the Development of Behavior and the Nervous System,” Vol. 2, “Aspects of Neurogenesis” (G. Gottlieb, ed.), pp. 69–114, Academic Press, New York.Google Scholar
  26. Crain, S. M., 1974b, Selective depression of organotypic bioelectric activities of CNS tissue cultures by pharmacologic and metabolic agents, in “Drugs and the Developing Brain” (A. Vernadakis and N. Weiner, eds.), pp. 29–57, Plenum Press, New York.Google Scholar
  27. Crain, S. M., 1975, Development of complex synaptic functions in ‘simple’ neuronal arrays in culture, in “‘Simple’ Nervous Systems” (P. N. R. Usherwood and D. R. Newth, eds.), pp. 67–117, Edward Arnold Ltd., London.Google Scholar
  28. Crain, S. M., and Bornstein, M. B., 1964, Bioelectric activity of neonatal mouse cerebral cortex during growth and differentiation in tissue culture, Exp. Neurol. 10: 425–450.CrossRefGoogle Scholar
  29. Crain, S. M., and Bornstein, M. B., 1972, Organotypic bioelectric activity in cultured reaggregates of dissociated rodent brain cells, Science 176: 182–184.CrossRefGoogle Scholar
  30. Crain, S. M., and Bornstein, M. B., 1974, Early onset in inhibitory functions during synaptogenesis in fetal mouse brain cultures, Brain Res. 68: 351–357.CrossRefGoogle Scholar
  31. Crain, S. M., and Peterson, E. R., 1964, Complex bioelectric activity in organized tissue cultures of spinal cord (human, rat and chick), J. Cell. Comp. Physiol. 64: 1–15.CrossRefGoogle Scholar
  32. Crain, S. M., and Peterson, E. R., 1967, Onset and development of functional interneuronal connections in explants of rat spinal cord-ganglia during maturation in culture, Brain Res. 6: 750–762.CrossRefGoogle Scholar
  33. Crain, S. M., and Peterson, E. R., 1974a, Enhanced afferent synaptic functions in fetal mouse spinal cord-sensory ganglion explants following NGF-induced ganglion hypertrophy, Brain Res. 79: 145–152.CrossRefGoogle Scholar
  34. Crain, S. M., and Peterson, E. R., 1974b, Development of neural connections in culture, Ann. N. Y. Acad. Sci. 228: 6–34.CrossRefGoogle Scholar
  35. Crain, S. M., and Peterson, E. R., 1975, Development of specific sensory-evoked synaptic networks in fetal mouse cord-brainstem cultures. Science 188: 275–278.CrossRefGoogle Scholar
  36. Crain, S. M., and Pollack, E. D., 1972, Restorative effects of cyclic AMP on complex bioelectric activities after acute Ca++-deprivation in cultured CNS tissues, J. Cell Biol 55: 52a.Google Scholar
  37. Crain, S. M., and Pollack, E. D., 1973, Restorative effects of cyclic AMP on complex bioelectric activities of cultured fetal rodent CNS tissues after acute Ca++-deprivation, J. Neurobiol. 4: 321–342.CrossRefGoogle Scholar
  38. Crain, S. M., Bornstein, M. B., and Peterson, E. R., 1968A, Maturation of cultured embryonic CNS tissues during chronic exposure to agents which prevent bioelectric activity, Brain Res. 8: 363–372.Google Scholar
  39. Crain, S. M., Peterson, E. R., and Bornstein, M. B., 1968b, Formation of functional interneuronal connections between explants and various mammalian central nervous tissues during development in vitro, in “Ciba Foundation Symposium, Growth of the Nervous System” (G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 13–31, J. & A. Churchill, London.Google Scholar
  40. Crain, S. M., Alfei, L., and Peterson, E. R., 1970, Neuromuscular transmission in cultures of adult human and rodent skeletal muscle after innervation in vitro by fetal rodent spinal cord, J. Neurobiol. 1: 471–489.CrossRefGoogle Scholar
  41. Crain, S. M., Raine, C. S., and Bornstein, M. B., 1975, Early formation of synaptic networks in cultures of fetal mouse cerebral neocortex and hippocampus, J. Neurobiol 6: 329–336.CrossRefGoogle Scholar
  42. Curtis, D. R., and Johnston, G. A. R., 1974, Amino acid transmitters in the mammalian central nervous system, Ergeb. Physiol. Biol Chem. Exp. Pharmakol. 69: 97–188.Google Scholar
  43. Curtis, D. R., and Watkins, J. C., 1965, The pharmacology of amino acids related to γ-aminobutyric acid, Pharmacol Rev. 17: 347–391.Google Scholar
  44. Curtis, D. R., Hosli, L., Johnston, G. A. R., and Johnston, I. H., 1968, The hyperpolarization of spinal motoneurones by glycine and related amino acids, Exp. Brain Res. 5: 235–258.CrossRefGoogle Scholar
  45. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R., 1971a, The specificity of strychnine as a glycine antagonist in the mammalian spinal cord, Exp. Brain Res. 12: 547–565.CrossRefGoogle Scholar
  46. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., 1971b, Bicuculline, an antagonist of GAB A and synaptic inhibition in the spinal cord, Brain Res. 32: 69–96.CrossRefGoogle Scholar
  47. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., and McLennan, H., 1971c, Antagonism between bicuculline and GABA in the cat brain, Brain Res. 33: 57–73.CrossRefGoogle Scholar
  48. Curtis, D. R., Game, C. J. A., Johnston, G. A. R., McCulloch, R. M., and Maclachlan, R. M., 1972, Convulsive action of penicillin, Brain Res, 43: 242–245.CrossRefGoogle Scholar
  49. Davidoff, R. A., 1972A, The effects of bicuculline on the isolated spinal cord of the frog, Exp. Neurol 35: 179–193.Google Scholar
  50. Davidoff, R. A., 1912b, Penicillin and presynaptic inhibition in the amphibian spinal cord, Brain Res. 36: 218–222.CrossRefGoogle Scholar
  51. Davidoff, R. A., Silvey, G. E., Kobetz, S. A., and Spira, H. M., 1973, TV-Methyl bicuculline and primary afferent depolarization, Exp. Neurol 38: 525–528.CrossRefGoogle Scholar
  52. Davison, A. N., and Kaczmarek, L. K., 1971, Taurine-A possible neurotransmitter? Nature (London) 234: 107–108.CrossRefGoogle Scholar
  53. de Groat, W. C., 1972, GABA-depolarization of a sensory ganglion: Antagonism by picrotoxin and bicuculline, Brain Res. 38: 429–432.CrossRefGoogle Scholar
  54. de Groat, W. C., Lalley, P. M., and Saum, W. R., 1972, Depolarization of dorsal root ganglia in the cat by GAB A and related amino acids: Antagonism by picrotoxin and bicuculline, Brain Res. 44: 273–277.CrossRefGoogle Scholar
  55. Dhawan, B. N., Sharma, J. N., and Srimal, R. C., 1972, Selective inhibition by glycine of some somatic reflexes in the cat, Br. J. Pharmacol 44: 404–412.Google Scholar
  56. Diamond, J., and Miledi, R., 1962, A study of foetal and new-born rat muscle fibres, J. Physiol. (London) 162: 393–408.Google Scholar
  57. Dickinson, J. C., and Hamilton, P. B., 1966, The free amino acids of human spinal fluid determined by ion exchange chromatography, J. Neurochem. 13: 1179–1187.CrossRefGoogle Scholar
  58. Eccles, J. C., 1964, “The Physiology of Synapses,” Springer-Verlag, Berlin.CrossRefGoogle Scholar
  59. Farese, R. V., 1971, Calcium as a mediator of adrenocorticotrophic hormone action on adrenal protein synthesis, Science 173: 447–450.CrossRefGoogle Scholar
  60. Florendo, N. T., Barrnett, R. J., and Greengard, P., 1971, Cyclic 3′,5′-nucleotide phosphodiesterase: Cytochemical localization in cerebral cortex, Science 173: 745–747.CrossRefGoogle Scholar
  61. Forn, J., Tagliamonte, A., Tagliamonte, P., and Gessa, G. L., 1972, Stimulation by dibutyryl cyclic AMP of serotonin synthesis and tryptophan transport in brain, Nature (London) New Biol 237: 245–247.Google Scholar
  62. Gessa, G. L., Krishna, G., Forn, J., Tagliamonte, A., and Brodie, B. B., 1970, Behavioral and vegetative effects produced by dibuturyl cyclic AMP injected into different areas of the brain, in “Role of Cyclic AMP in Cell Function” ( P. Greengard and E. Costa, eds.), pp. 371–381, Raven Press, New York.Google Scholar
  63. Glotzner, F. L., 1974, Intracellular recording of spontaneous local responses in the chronic epilepto-genic focus of a rhesus monkey, Exp. Neurol 42: 233–237.CrossRefGoogle Scholar
  64. Greengard, P., and Kuo, J. F., 1970, On the mechanism of action of cyclic AMP, in “Role of Cyclic AMP in Cell Function” ( P. Greengard and E. Costa, eds.), pp. 287–306, Raven Press, New York.Google Scholar
  65. Hardman, J. G., Robison, G. A., and Sutherland, E. W., 1971, Cyclic nucleotides, Annu. Rev. Physiol. 33: 311–336.CrossRefGoogle Scholar
  66. Henkart, M., 1972, Structure and function of the endoplasmic reticulum in the squid giant axon, Soc. Neurosci. 2nd Annu. Meet. Houston: p. 103.Google Scholar
  67. Hoffer, B. J., 1971, Discussion in: Symposium on Cyclic AMP and Cell Function, Ann. N.Y. Acad. Sci. 185:555.CrossRefGoogle Scholar
  68. Hosli, L., Andres, P. F., and Hosli, E., 1971, Effects of glycine on spinal neurones grown in tissue culture, Brain Res. 34: 399–402.CrossRefGoogle Scholar
  69. Iversen, L. L., Kelly, J. S., Minchin, M., Schon, F., and Snodgrass, S. R., 1973, Role of amino acids and peptides in synaptic transmission, Brain Res. 62: 567–576.CrossRefGoogle Scholar
  70. Johnson, G. A., Boukma, S. J., Lahti, R. A., and Mathews, J., 1972, Cyclic AMP and cyclic nucleotide phosphodiesterase activity in synaptic vesicles, Fed. Prod. Fed. Am. Soc. Exp. Biol 31: 513.Google Scholar
  71. Katz, B., 1969, “The Release of Neural Transmitter Substances,” pp. 1–60, C. C. Thomas, Springfield, Ill.Google Scholar
  72. Katz, B., and Miledi, R., 1965a, The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction, Proc. R. Soc. London Ser. B 161: 483–495.CrossRefGoogle Scholar
  73. Katz, B., and Miledi, R., 19656, The effect of calcium on acetylcholine release from motor nerve terminals, Proc. R. Soc. London Ser. B 161: 496–503.Google Scholar
  74. Katz, B., and Miledi, R., 1968, The role of calcium in neuromuscular facilitation, J. Physiol. (London) 195: 481–492.Google Scholar
  75. Korneliussen, H., 1972, Ultrastructure of normal and stimulated motor endplates, Z. Zellforsch. Mikrosk. Anat. 130: 28–57.CrossRefGoogle Scholar
  76. Kuffler, S. W., Dennis, M. J., and Harris, A. J., 1971, The development of chemosensitivity in extra-synaptic areas of the neuronal surface after denervation of parasympathetic ganglion cells in the heart of the frog, Proc. R. Soc. Lond. Ser. B 177: 555–563.CrossRefGoogle Scholar
  77. Lahdesmaki, P., and Oja, S. S., 1972, Effect of electrical stimulation in the influx and efflux of taurine in brain slices of newborn and adult rats, Exp. Brain Res. 15: 430–438.CrossRefGoogle Scholar
  78. Lambert, E. H., and Elmqvist, D., 1971, Quantal components of end-plate potentials in the myasthenic syndrome, Ann. N.Y. Acad. Sci. 183: 183–199.CrossRefGoogle Scholar
  79. La Vail, J. H., and Wolf, M. K., 1973, Postnatal development of the mouse dentate gyms in organotypic cultures of the hippocampal formation, Am. J. Anat. 137: 47–66.CrossRefGoogle Scholar
  80. Llinds, R., Blinks, J. R., and Nicholson, C., 1972, Calcium transient in presynaptic terminal of squid giant synapse: Detection with aequorin, Science 176: 1127–1129.CrossRefGoogle Scholar
  81. McAfee, D. A., and Greengard, P., 1972, Adenosine 3′,5′-monophosphate: Electrophysiological evidence for a role in synaptic transmission, Science 178: 310–312.CrossRefGoogle Scholar
  82. Matsumoto, H., and Ajmone Marsan, C., 1964, Cortical cellular phenomena in experimental epilepsy: Interictal manifestations, Exp. Neurol. 9: 286–304.CrossRefGoogle Scholar
  83. Miledi, R., and Thies, R. E., 1967, Post-tetanic increase in frequency of miniature end-plate potentials in calcium-free solutions, J. Physiol. (London) 192: 54–55.Google Scholar
  84. Miller, W. H., Gorman, R. E., and Bitensky, M. W., 1971, Cyclic adenosine monophosphate: function in photoreceptors, Science 174: 295–297.CrossRefGoogle Scholar
  85. Model, P. G., Bornstein, M. B., Crain, S. M., and Pappas, G. D., 1971, An electron microscopic study of the development of synapses in cultured fetal mouse cerebrum continuously exposed to xylocaine, J. Cell Biol. 49: 362–371.CrossRefGoogle Scholar
  86. Murray, M. R., 1965, Nervous tissues in vitro, in “Cells and Tissues in Culture” ( E. N. Willmer, ed.), pp. 373–455, Academic Press, London.Google Scholar
  87. Nelson, P. G., and Peacock, J. H., 1973, Electrical activity in dissociated cell cultures from fetal mouse cerebellum, Brain Res. 61: 163–174.CrossRefGoogle Scholar
  88. Obata, K., 1974, Transmitter sensitivities of some nerve and muscle cells in culture, Brain Res. 73: 71–88.CrossRefGoogle Scholar
  89. Pappas, G. D., Fox, G. Q., Masurovsky, E. B., Peterson, E. R., and Crain, S. M., 1975, Differentiation in neuronal growth cone relationships in the mammalian CNS, in “Advances in Neurology,” Vol. 12, “Physiology and Pathology of Dendrites” ( G. W. Kreutzberg, ed.), pp. 163–180, Raven Press, New York.Google Scholar
  90. Peach, M. J., 1972, Stimulation of release of adrenal catecholamine by adenosine 3′:5′ cyclic monophosphate and theophylline in the absence of extracellular Ca2+, Proc. Natl. Acad. Sci. U.S.A. 69: 834–836.CrossRefGoogle Scholar
  91. Peacock, J. H., Nelson, P. G., and Goldstone, M. W., 1973, Electrophysiologic study of cultured neurons dissociated from spinal cords and dorsal root ganglia of fetal mice, Dev. Biol. 30: 137–152.CrossRefGoogle Scholar
  92. Peterson, E. R., Crain, S. M., and Murray, M. R., 1965, Differentiation and prolonged maintenance of bioelectrically active spinal cord cultures (rat, chick and human), Z. Zellforsch. Mikrosk. Anat. 66: 130–154.CrossRefGoogle Scholar
  93. Peterson, E. R., Masurovsky, E. B., and Crain, S. M., 1974, Enhanced survival and selective ‘hyper-trophy’ of dorsal root ganglia after exposure of fetal rodent spinal cord-ganglion explants to nerve growth factor, J. Cell Biol. 63: 265a.CrossRefGoogle Scholar
  94. Pollack, E. D., and Crain, S. M., 1972, Development of motility in fish embryos in relation to release from early CNS inhibition, J. Neurobiol. 3: 381–385.CrossRefGoogle Scholar
  95. Prince, W. T., Berridge, M. J., and Rasmussen, H., 1972, Role of calcium and adenosine-3′:5′-cyclic monophosphate in controlling fly salivary gland secretion, Proc. Natl. Acad. Sci. U.S.A. 69: 553–557.CrossRefGoogle Scholar
  96. Purpura, D. P., 1960, Pharmacological actions of w-amino acid drugs on different cortical synaptic organizations, in “Inhibition in the Nervous System and Gamma-Aminobutyric Acid” (E. Roberts, C. F. Baxter, A. Van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 495–514, Pergamon Press, New York.Google Scholar
  97. Purpura, D. P., 1969, Stability and seizure susceptibility of immature brain, in “Basic Mechanisms of the Epilepsies” (H. H. Jasper, A. A. Ward, and A. Pope, eds.), pp. 481–505, Little, Brown, Boston.Google Scholar
  98. Purpura, D. P., 1972, Ontogenetic models in studies of cortical seizure activities, in “Experimental Models of Epilepsy” (D. P. Purpura, J. K. Penry, D. Tower, D. M. Woodbury, and R. Walter, eds.), pp. 531–556, Raven Press, New York.Google Scholar
  99. Purpura, D. P., and Housepian, E. M., 1961, Morphological and physiological properties of chronically isolated immature neocortex, Exp. Neurol 4: 377–401.CrossRefGoogle Scholar
  100. Purpura, D. P., and Shofer, R. J., 1972, Excitatory action of dibutyryl cyclic adenosine monophosphate on immature cerebral cortex, Brain Res. 38: 179–181.CrossRefGoogle Scholar
  101. Rasmussen, H., 1970, Cell communication, calcium ion, and cyclic adenosine monophosphate, Science 170: 404–412.CrossRefGoogle Scholar
  102. Reichelt, K. L., and Kvamme, E., 1973, Histamine-dependent formation of N-acetyl-aspartyl peptides in mouse brain, J. Neurochem. 21: 849–859.CrossRefGoogle Scholar
  103. Sabelli, H. C., DeFoe-May, J., and Bulat, M., 1974, Selective drug effects on motor and sensory nerves: A “Dale’s principle” for receptors, Soc. Neurosci. 4th Annu. Meet. St. Louis, Mo.: 405.Google Scholar
  104. Siggins, G. R., Hoffer, B. J., and Bloom, F. E., 1971a, Response to Godfraind, J. M. and R. Pumain, Cyclic adenosine monophosphate and norepinephrine: Effect on Purkinje cells in rat cerebellar cortex, Science 174: 1257–1259.CrossRefGoogle Scholar
  105. Siggins, G. R., Oliver, A. P., Hoffer, B. J., and Bloom, F. E., 19716, Cyclic adenosine monophosphate and norepinephrine: Effects on transmembrane properties of cerebellar Purkinje cells, Science 171: 192–194.Google Scholar
  106. Singer, J. J., and Goldberg, A. L., 1970, Cyclic AMP and transmission at the neuromuscular junction, in “Role of Cyclic AMP in Cell Function” ( P. Greengard and E. Costa, eds.), pp. 335–348, Raven Press, New York.Google Scholar
  107. Takamori, M., 1972, Caffeine, calcium and Eaton-Lambert syndrome, Arch. Neurol. 27: 285–291.Google Scholar
  108. Tapia, R., 1974, The role of 7-aminobutyric acid metabolism in the regulation of cerebral excitability, in “Advances in Behavioral Biology,” Vol. 10, “Neurohumoral Coding of Brain Function” ( R. D. Myers and R. R. Drucker-Colin, eds.), pp. 3–26, Plenum Press, New York.Google Scholar
  109. Teichberg, S., and Holtzman, E., 1973, Axonal agranular reticulum and synaptic vesicles in cultured embryonic chick sympathetic neurons, J. Cell Biol. 57: 88–108.CrossRefGoogle Scholar
  110. Torda, C., 1972, Effect of cyclic adenosine 3′,5′-monophosphate (c-AMP) on synaptic spike generation, in “Advances in Cyclic Nucleotide Research,” Vol. 1, “Physiology and Pharmacology of Cyclic AMP” ( P. Greengard, R. Paoletti, and G. A. Robison, eds.), p. 589, Raven Press, New York.Google Scholar
  111. Van den Berg, C. J., Van Kempen, G. M. J., Schad£, J. P., and Velstra, H., 1965, Levels and intracellular localization of glutamic decarboxylase and 7-aminobutyric transaminase and other enzymes during the development of the brain, J. Neurochem. 12: 863–869.CrossRefGoogle Scholar
  112. Veseley, D. L., and Hadley, M, E., 1971, Calcium requirement for melanophore-stimulating hormone action on melanophores, Science 173: 923–925.CrossRefGoogle Scholar
  113. Wall, P. D., 1964, Presynaptic control of impulses at the first central synapse in the cutaneous pathway, Prog. Brain Res. 12: 92–118.CrossRefGoogle Scholar
  114. Werman, R., Davidoff, R. A., and Aprison, M. H., 1968, Inhibitory action of glycine on spinal neurons in the cat, J. Neurophysiol. 31: 81–95.Google Scholar
  115. Whitfield, J. F., MacManus, J. P., Braceland, B. M., and Gillan, D. J., 1972, The influence of calcium on the cyclic AMP-mediated stiumlation of DNA synthesis and cell proliferation by prostaglandin E1, J. Cell. Physiol. 79: 353–362.CrossRefGoogle Scholar
  116. Wooten, G. F., Thoa, N. B., Kopin, I. J., and Axelrod, J., 1973, Enhanced release of dopamine-β-hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cyclic adenosine 3′5′-monophosphate and theophylline, Mol. Pharmacol. 9: 178–183.Google Scholar
  117. Yamamoto, C., 1972, Intracellular study of seizure-like afterdischarges elicited in thin hippocampal sections in vitro, Exp. Neurol. 35: 154–164.CrossRefGoogle Scholar
  118. Zipser, B., Crain, S. M., and Bornstein, M. B., 1973, Directly evoked “paroxysmal” depolarizations of mouse hippocampal neurons in synaptically organized ex plants in longterm culture, Brain Res. 60: 489–495.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Stanley M. Crain
    • 1
  1. 1.Departments of Neuroscience and Physiology, The Rose F. Kennedy Center for Research in Mental Retardation and Human DevelopmentAlbert Einstein College of MedicineBronxUSA

Personalised recommendations