Advertisement

Molecular Beam Deposition of Solids on Surfaces: Ultrathin Films

  • R. J. H. Voorhoeve

Abstract

The deposition of solids on surfaces encompasses such widely diverse subjects as the vacuum deposition of metals on textiles, the formation of ice on airplane wings, the condensation of silicon on sapphire, and the deposition of lead on spark plugs, to name just a few of the processes in which atoms derived from the gas phase are condensed on a solid substrate. The importance of many of these processes in technology and the belief that relatively simple laws govern the variety of phenomena have spurred an extraordinary interest in finding such laws and in controlling the processes of the deposition of thin films. This chapter is concerned with only part of this effort, namely with the deposition of solids in vacuum. In vacuum deposition the atoms or molecules derive from a gas at low pressure, i.e., 10−8 to 1 Torr. Molecular beam deposition is particularly concerned with processes in which the gas atoms follow a rectilinear path from their source to the substrate. This includes vacuum evaporations, even though no collimated beams are used in these processes. In recent years, several reviews have dealt with vacuum evaporation(1–12) The reader is referred to these for many aspects not covered here (especially the subject of epitaxy) and also for much of the early work. The author acknowledges the benefits he derived from those reviews in preparing this chapter.

Keywords

Thin Solid Film Molecular Beam Epitaxial Growth Misfit Dislocation Ultrathin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. W. Pashley, The study of epitaxy in thin surface films, Advan. Phys. 5, 173–240 (1956).Google Scholar
  2. 2.
    D. W. Pashley, The nucleation, growth, structure and epitaxy of thin surface films, Advan. Phys. 14, 327–418 (1965).Google Scholar
  3. 3.
    D. W. Pashley, in Recent Progress in Surface Science (J. F. Danielli, A. C. Riddiford, and M. D. Rosenberg, eds.), Vol. 3, pp. 23–70, Academic, New York (1970).Google Scholar
  4. 4.
    J. P. Hirth and G. M. Pound, Condensation and Evaporation, Pergamon, Oxford (1963).Google Scholar
  5. 5.
    H. Sato, Film growth, Ann. Rev. Materials Sci. 2, 217–252 (1972).Google Scholar
  6. 6.
    J. W. Matthews, Evaporated single-crystal films, Phys. Thin Films 4, 137–190 (1967).Google Scholar
  7. 7.
    K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York (1969).Google Scholar
  8. 8.
    T. A. Milne, and F. T. Greene, Molecular beams in high temperature chemistry, Advan. High Temp. Chem. 2, 107–150 (1969).Google Scholar
  9. 9.
    J. W. Geus, in Chemisorption and Reactions on Metallic Films (J. R. Anderson, ed.), Vol. 1, pp. 129–224, Academic, London (1971).Google Scholar
  10. 10.
    E. Bauer and H. Poppa, Recent advances in epitaxy, Thin Solid Films 12, 167–186 (1972).Google Scholar
  11. 11.
    B. Lewis, Physical processes in epitaxial growth, Thin Solid Films 7, 179–217 (1971).Google Scholar
  12. 12.
    G. A. Somorjai and J. E. Lester, in Progress in Solid State Chemistry (H. Reiss, ed.), Vol. 4, pp. 1–52, Pergamon, Oxford (1967).Google Scholar
  13. 13.
    L. Dunoyer, Sur la théorie cinétique des gaz et la réalization d’un rayonnement matériel d’origine thermique, Compt. Rend. 152, 592–595 (1911).Google Scholar
  14. 14.
    M. Volmer, Kinetik der Phasenbildung, Steinkopff, Dresden (1939).Google Scholar
  15. 15.
    W. J. Dunning, in Nucleation (A. C. Zettlemoyer,ed.), pp. 1–67, Marcel Dekker, New York (1969).Google Scholar
  16. 16.
    W. Ostwald, Lehrbuch der Allgemeinen Chemie, Leipzig (1896), cited by VoImer(14).Google Scholar
  17. 17.
    J. W. Gibbs, The Scientific Papers of J. Willard Gibbs, Dover, New York (1961).Google Scholar
  18. 18.
    W. Thomson, Equilibrium of vapour at a curved surface of liquid, Phil. Mag. 42, 448–452 (1877).Google Scholar
  19. 19.
    H. Loewel (1850), cited by Volmer.(14) Google Scholar
  20. 20.
    D. Turnbull and B. Vonnegut, Nucleation catalysis, Ind. Eng. Chem. 44, 1292–1298 (1952).Google Scholar
  21. 21.
    J. B. Taylor and I. Langmuir, The evaporation of atoms, ions and electrons from caesium films on tungsten, Phys. Rev. 44, 423–458 (1933).Google Scholar
  22. 22.
    F. O. Goodman, Review of the theory of the scattering of gas atoms by solid surfaces, Surface Sci. 26, 327–362 (1971).Google Scholar
  23. 23.
    W. H. Weinberg, Atomic helium scattering and diffraction from solid surfaces, J. Phys. C: Solid State Phys. 5, 2098–2104 (1972).Google Scholar
  24. 24.
    I. Estermann and O. Stern, Beugung von Molekularstrahlen, Z. Phys. 61, 95–125 (1930).Google Scholar
  25. 25.
    D. V. Tendulkar and R. E. Stickney, Diffraction of helium atoms from a tungsten (112) crystal surface, Surface Sci. 27, 516–522 (1971).Google Scholar
  26. 26.
    W. H. Weinberg and R. P. Merrill, Atomic and molecular diffraction of helium and deuterium from a tungsten carbide surface characterized by low-energy electron diffraction, Phys. Rev. Letters 25, 1198–1201 (1970).Google Scholar
  27. 27.
    W. H. Weinberg and R. P. Merrill, Atomic and molecular diffraction and scattering from a tungsten carbide surface characterized by LEED, J. Chem. Phys. 56, 2893–2902 (1972).Google Scholar
  28. 28.
    A. Ellett, H. F. Olson, and H. A. Zahl, The reflection of atoms from crystals, Phys. Rev. 34, 493–501 (1929).Google Scholar
  29. 29.
    H. A. Zahl, Reflection of cadmium and zinc atoms from sodium chloride crystals, Phys. Rev. 36, 893–903 (1930).Google Scholar
  30. 30.
    P. M. Marcus and J. H. McFee, in Recent Research in Molecular Beams ( I. Estermann, ed.), pp. 43–55, Academic, New York (1959).Google Scholar
  31. 31.
    B. Josephy, The reflection of molecular rays of mercury by crystal faces, Z. Phys. 80, 755–762 (1933).Google Scholar
  32. 32.
    A. A. Kinawi and J. B. Hudson, Impurity effects on heterogeneous nucleation from the vapor. Ill—Mercury on pyrex glass, J. Vac. Sci. Technol. 6, 68–73 (1969).Google Scholar
  33. 33.
    J. B. Hudson and J. S. Sandejas, Impurity effects on heterogeneous nucleation from the vapor. II—Cadmium on nitrogen-contaminated tungsten, Surface ScL 15, 27–36 (1969).Google Scholar
  34. 34.
    R. J. H. Voorhoeve, J. N. Carides, and R. S. Wagner, Kinetics and thermodynamics of thin film deposition by molecular beam methods. I. Adsorption and clustering of cadmium on germanium single crystals, J. Appl. Phys. 43, 4876–4885 (1972).Google Scholar
  35. 35.
    J. R. Arthur and A. Y. Cho, Adsorption and desorption kinetics of Cu and Au on (0001) graphite, Surface Sci. 36, 641–660 (1973).Google Scholar
  36. 36.
    R. A. Oman, Numerical experiments on scattering of noble gases from single-crystal silver, J. Chem. Phys. 48, 3919–3929 (1968).Google Scholar
  37. 37.
    R. M. Logan and J. C. Keck, Classical theory for the interaction of gas atoms with solid surfaces, J. Chem. Phys. 49, 860–876 (1968).Google Scholar
  38. 38.
    J. D. McClure, Atomic and molecular scattering from solids. II. Comparison of classical scattering models in relation to experiment, J. Chem Phys. 51, 1687–1700 (1969).Google Scholar
  39. 39.
    J. D. McClure, Surface rainbows: a similitude between classical and diffractive scattering of atoms from crystalline surfaces, J. Chem. Phys. 52, 2712–2718 (1970).Google Scholar
  40. 40.
    J. Lorenzen and L. M. Raff, Quantitative comparison of gas-surface theory with molecular beam data, J. Chem. Phys. 54, 674–679 (1971).Google Scholar
  41. 41.
    L. Trilling, in Fundamentals of Gas-Surface Interactions ( H. Saltsburg, J. N. Smith, Jr., and M. Rogers, eds.), pp. 392–421, Academic, New York (1967).Google Scholar
  42. 42.
    L. Trilling, The interaction of monoatomic inert gas molecules with a continuous elastic solid, Surface Sci. 21, 337–365 (1970).Google Scholar
  43. 43.
    W. H. Weinberg and R. P. Merrill, A simple classical model for trapping in gas-surface reactions, J. Vac. Sci. Technol. 8, 718–724 (1971).Google Scholar
  44. 44.
    N. B. Cabrera, The structure of crystal surfaces, Disc. Faraday Soc. 28, 16–22 (1959).Google Scholar
  45. 45.
    R. W. Zwanzig. Collision of a gas atom with a cold surface, J. Chem. Phys. 32, 1173–1177 (1960).Google Scholar
  46. 46.
    A. F. Devonshire, The interaction of atoms and molecules with solid surfaces. VIII. The exchange of energy between a gas and a solid, Proc. Roy. Soc. A158, 269–279 (1937).Google Scholar
  47. 47.
    A. J. Howsmon, Atomic scattering from a perfect crystal, in Rarefied Gas Dynamics, Suppl. 3 (Proc. 4th Intern. Symp. on Rarefied Gas Dynamics), Vol. 2, pp. 417–428 (1966).Google Scholar
  48. 48.
    A. J. Howsmon, Atomic scattering from a perfect crystal, in Rarefied Gas Dynamics, Suppl. 4 (Proc. 5th Intern. Symp. on Rarefied Gas Dynamics), Vol. 1, pp. 67–82 (1967).Google Scholar
  49. 49.
    J. L. Beeby, Scattering helium atoms from surfaces, J. Phys. C: Solid State Phys. 4, L359 - L363 (1971).Google Scholar
  50. 50.
    J. L. Beeby, The scattering of atoms from surfaces: the one-phonon contribution, J. Phys. C: Solid State Phys. 5, 3438–3456 (1972).Google Scholar
  51. 51.
    J. L. Beeby, The scattering of atoms from surfaces: the 2-phonon terms, J. Phys. C: Solid State Phys. 5, 3457–3461 (1972).Google Scholar
  52. 52.
    F. O. Goodman, Scattering of atoms by solid surfaces, Surface Sci. 24, 667–699Google Scholar
  53. 53.
    F. O. Goodman, Quantum-mechanical treatment of the one-phonon inelastic scattering of gas atoms in three dimensions by a simplified continuum model of a solid, Surface Sci. 30, 1–42 (1972).Google Scholar
  54. 54.
    F. O. Goodman, On the theory of accommodation coefficients, J. Phys. Chem. Solids 24, 1451–1466 (1963).Google Scholar
  55. 55.
    L. Trilling, The dependence of accommodation coefficient on surface temperature, Surface Sci. 27, 1–10 (1971).Google Scholar
  56. 56.
    P. Morse, Diatomic molecules according to the wave-mechanics. II. Vibrational levels, Phys. Rev. [2] 34, 57–64 (1929).Google Scholar
  57. 57.
    G. Ehrlich, Atomic processes at solid surfaces, Ann. Rev. Phys. Chem. 17, 295–320 (1966).Google Scholar
  58. 58.
    R. J. H. Voorhoeve and J. N. Carides, Kinetics and thermodynamics of the deposition of zinc films on germanium (110) and (100) surfaces, J. Vac. Sci. Technol. 10, 513–519 (1973).Google Scholar
  59. 59.
    F. O. Goodman, On the trapping process in gas-surface interactions, in Rarefied Gas Dynamics, Suppl. 5 (Proc. 6th Intern. Symp. Rarefied Gas Dynamics), Vol. 2, pp. 1105–1118 (1969).Google Scholar
  60. 60.
    D. P. Jackson and J. B. French, High energy scattering of inert gases from well-characterized surfaces. II. Theoretical, in Rarefied Gas Dynamics, Suppl. 5 (Proc. 6th Intern. Symp. Rarefied Gas Dynamics), Vol. 2, pp. 1119–1134 (1969).Google Scholar
  61. 61.
    J. E. Lennard-Jones. The interaction of atoms and molecules with solid surfaces. XI. The dispersal of energy from an activated link, Proc. Roy. Soc. London A 163, 127–131 (1937).Google Scholar
  62. 62.
    B. McCarroll and G. Ehrlich, in Condensation and Evaporation of Solids ( E. Rutner, P. Goldfinger, and J. P. Hirth, eds.), pp. 521–538, Gordon and Breach, New York, (1964).Google Scholar
  63. 63.
    G. W. Sears and J. W. Cahn, Interaction of condensible gases with cold surfaces, J. Chem. Phys. 33, 494–499 (1960).Google Scholar
  64. 64.
    V. Ruth, K. L. Moazed, and J. P. Hirth, Effect of beam temperature on the heterogeneous nucleation of zinc from the vapor, J. Chem. Phys. 44, 2093–2100 (1966).Google Scholar
  65. 65.
    S. J. Hruska and G. M. Pound, Thermal-beam energy and nucleation of metal crystals on substrates, Trans. AIME 230, 1406–1413 (1964).Google Scholar
  66. 66.
    A. R. Beavitt, R. C. Turnell, and D. S. Campbell, Study of the energy distribution and nucleation of evaporated gold using a velocity selector, Thin Solid Films 1, 3–11 (1967).Google Scholar
  67. 67.
    G. A. Melin, and R. J. Madix, Energy accommodation during oxygen atom recombination on metal surfaces, Trans. Faraday Soc. 67, 198–211 (1971).Google Scholar
  68. 68.
    A. E. Dabiri, T. J. Lee, and R. E. Stickney, Spatial and speed distributions of hydrogen and deuterium desorbed from a polycrystalline nickel surface, Surface Sci. 26, 522–544 (1971).Google Scholar
  69. 69.
    J. M. Jackson and A. Howarth, Exchange of energy between diatomic gas molecules and a solid surface, Proc. Roy. Soc. London A 152, 515–529 (1935).Google Scholar
  70. 70.
    P. Feuer and C. Osburn, Quantum theory of the accommodation coefficient of light diatomic gases, in Rarefied Gas Dynamics, Suppl. No. 5 (Proc. 6th Intern. Symp. Rarefied Gas Dynamics), Vol. 2, pp. 1095–1104 (1969).Google Scholar
  71. 71.
    R. M. Logan, Rotational transitions in the scattering of a beam of light diatomic molecules from a surface, Mol. Phys. 17, 147–155 (1969).Google Scholar
  72. 72.
    M. R. Busby and L. Trilling, The interaction of diatomic gas molecules with solid surfaces, in Rarefied Gas Dynamics, Suppl. No. 5 (Proc. 6th Intern. Symp. rarefied Gas Dynamics), Vol. 2, pp. 1135–1140 (1969).Google Scholar
  73. 73.
    R. A. Oman, Calculations of the interactions of diatomic molecules with solid surfaces, in Rarefied Gas Dynamics, Suppl. No. 4 (Proc. 5th Intern. Symp. Rarefied Gas Dynamics), Vol. 1, pp. 83–100 (1967).Google Scholar
  74. 74.
    R. P. Forier, J. P. Drauchot, and J. van Cakenberghe, Energy transfer from excited gaseous molecules to solids, Nature 229, 488–489 (1971).Google Scholar
  75. 75.
    T. F. Hunter, Vibrational energy transfer at gas-solid interfaces, J. Chem. Phys. 51, 2641–2647 (1969).Google Scholar
  76. 76.
    R. P. Burns, Molecular-beam-surface interactions, J. Chem. Phys. 52, 2152–2153 (1970).Google Scholar
  77. 77.
    H. Ehrhardt, R. Einhaus, and H. Engelke, Die Messung des Austausches innerer Energie zwischen Propan und einer Metalloberfläche, Z. Physik 191, 469–479 (1966).Google Scholar
  78. 78.
    R. J. Madix and A. Susu, Reactive scattering of halogen molecules from (111) surfaces of silicon and germanium: comparison with oxygen species, J. Catalysis 28, 316–321 (1973).Google Scholar
  79. 79.
    F. O. Rice and H. T. Byck, The exchange of energy between organic molecules in a molecular beam and metallic surfaces, Proc. Roy. Soc. (London) A 132, 50–66 (1931).Google Scholar
  80. 80.
    R. J. H. Voorhoeve, unpublished work (1972).Google Scholar
  81. 81.
    W. H. Weinberg, The bond-energy bond-order (BEBO) model of chemisorp-tion, J. Vac. Sei. Technol. 10, 89–95 (1973).Google Scholar
  82. 82.
    R. J. H. Voorhoeve, Simplifications and complications of heterogeneous nucleation theory, Surface Sei. 28, 145–156 (1971).Google Scholar
  83. 83.
    M. Volmer and A. Weber, Keimbildung in übersättigten Gebilden, Z. physik. Chem. 119, 277–301 (1926).Google Scholar
  84. 84.
    F. C. Frank and J. H. van der Merwe, One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth, Proc. Roy. Soc. (London) 198A, 216–225 (1949).Google Scholar
  85. 85.
    J. H. van der Merwe, Misfitting monolayers and oriented overgrowth, Disc. Faraday Soc. 9, 201–214 (1949).Google Scholar
  86. 86.
    J. H. van der Merwe, On the stresses and energies associated with intercrystal-line boundaries, Proc. Phys. Soc. 63A, 616–637 (1950).Google Scholar
  87. 87.
    J. H. van der Merwe, Crystal interfaces, Part I. Semi-infinite crystals, J. Appl. Phys. 34, 117–122 (1963).Google Scholar
  88. 88.
    J. H. van der Merwe, Crystal interfaces. Part II. Finite overgrowths, J. Appl. Phys. 34, 123–127 (1963).Google Scholar
  89. 89.
    J. H. van der Merwe and N. G. van der Berg, Misfit dislocation energy in epitaxial overgrowths of finite thickness, Surface Sei. 32, 1–15 (1972).Google Scholar
  90. 90.
    H. E. Neustadter and R. J. Bacigalupi, Dependence of adsorption properties on surface structure for body-centered-cubic substrates, Surface Sei. 6, 246–260 (1967).Google Scholar
  91. 91.
    G. D. W. Smith, On the mechanism of crystal nucleation at high adsorbate coverages, J. Vac. Sei. Technol. 10, 407–408 (1973).Google Scholar
  92. 92.
    E. Bauer and H. Poppa, Private communication (1973).Google Scholar
  93. 93.
    K. J. Matysik, R. J. H. Voorhoeve, and J. N. Carides, A mass spectrometric molecular beam study of the deposition of Mg on Ge single crystal surfaces, J. Vac. Sci. Technol. 11, 493–497 (1974).Google Scholar
  94. 94.
    J. Forssell, B. Persson, and L. Ystrom, The influence of bulk defects in alkali halide substrates on nucleation, growth and structure of gold films, Physica Scripta 2, 303–308 (1970).Google Scholar
  95. 95.
    A. K. Green, E. Bauer, and J. Dancy, Influence of chlorine on Au and Ag films evaporated on alkali halide substrates, J. Appl. Phys. 41, 4736–4740 (1970).Google Scholar
  96. 96.
    B. Lang, R. W. Joyner, and G. A. Somorjai, Low energy electron diffraction studies of chemisorbed gases on stepped surfaces of platinum, Surface Sci. 30, 454–474 (1972).Google Scholar
  97. 97.
    G. I. Distler, Crystallization as a matrix replication process, in Proc. 4th All-Union Conf. Crystal Growth (USSR), Vol. 1, pp. 109–126, Armenian Acad. Sciences Press, Erevan, Armenian SSR (1972).Google Scholar
  98. 98.
    A. Masson, J. J. Metois, and R. Kern, Migration brownienne de cristallites sur une surface et relation avec l’epitaxie. I. Partie experimentale, Surface Sci. 27, 463–482 (1971).Google Scholar
  99. 99.
    R. Kern, A. Masson, and J. J. Metois, Migration brownienne de cristallites sur une surface et relations avec l’epitaxie. II. Partie theorique, Surface Sci. 27, 483–498 (1971).Google Scholar
  100. 100.
    J. J. Metois, M. Gauch, A. Masson, and R. Kern, Epitaxie-phenomene de post nucleation sur l’exemple des couches minces discontinues d’aluminium et d’or sur (100) KC1, Thin Solid Films 11, 205–218 (1972).Google Scholar
  101. 101.
    J. J. Metois, M. Gauch, A. Masson, and R. Kern, Migration brownienne de cristallites sur une surface et relation avec l’epitaxie III. Cas de l’aluminium sur KC1; précisons sur le mechanisme de glissement, Surface Sci. 30, 43–52 (1972).Google Scholar
  102. 102.
    A. J. Donohoe and J. L. Robins, Mobility and coalescence of nuclei in metal vapour deposition on alkali halide substrates, J. Crystal Growth 17, 70–76 (1972).Google Scholar
  103. 103.
    H. Reiss, Rotation and translation of islands in the growth of heteroepitaxial films, J. Appl. Phys. 39, 5046–5061 (1968).Google Scholar
  104. 104.
    A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers, Philips Res. Rep. 22, 267–288 (1967).Google Scholar
  105. 105.
    G. Verhaegen, F. E. Stafford, P. Goldfinger, and M. Ackerman, Correlation of dissociation energies of gaseous molecules and of heats of vaporization of solids, Trans. Faraday Soc. 58, 1926–1938 (1962).Google Scholar
  106. 106.
    R. L. Gerlach and T. N. Rhodin, Binding and charge transfer associated with alkali metal adsorption on single crystal nickel surfaces, Surface Sci. 19, 403–426 (1970).Google Scholar
  107. 107.
    E. K. Stefanakos, A. A. Fadl, and F. R. Tuider, Desorption of Na and K from niobium, Surface Sci. 28, 221–228 (1971).Google Scholar
  108. 108.
    K. A. Gingerich, Mass spectrometric investigation of gas phase reactions during sublimation, J. Crystal Growth 9, 31–45 (1971).Google Scholar
  109. 109.
    P. Benjamin and C. Weaver, Condensation energies for metals on glass and other substrates, Proc. Roy. Soc. (London) A 252, 418–430 (1959).Google Scholar
  110. 110.
    A. G. Cullis and G. R. Booker, The epitaxial growth of silicon and germanium films on (111) silicon surfaces using UHV sublimation and evaporation techniques, J. Crystal Growth 9, 132–138 (1971).Google Scholar
  111. 111.
    R. C. Henderson and R. F. Helm, Silicon homoepitaxial thin films via silane pyrolysis: a HEED and Auger electron spectroscopy study, Surface Sci. 30, 310–334 (1972)Google Scholar
  112. 112.
    G. G. Valdimirov, B. K. Medvedev, and I. L. Sokol’skaya, Migration of Ti on tungsten in strong electric fields, Soviet Phys.—Solid State 12, 413–416 (1970).Google Scholar
  113. 113.
    H. Shelton and A. Y. H. Cho, Evaporative lifetimes of copper, chromium, beryllium, nickel, iron and titanium on tungsten and oxygenated tungsten, J. Appl. Phys. 87, 3544–3548 (1966).Google Scholar
  114. 114.
    D. W. Bassett and M. J., Parsley, Field ion microscope studies of transition metal adatom diffusion on (110), (211) and (321) tungsten surfaces, J. Phys. D 3, 707–716 (1970).Google Scholar
  115. 115.
    A. J. Melmed, Surface self-diffusion of nickel and platinum, J. Appl. Phys. 38, 1885–1892 (1967).Google Scholar
  116. 116.
    A. J. Melmed, Adsorption and surface diffusion of copper on tungsten, J. Chem. Phys. 43, 3057–3062 (1965).Google Scholar
  117. 117.
    A. J. Melmed, Influence of adsorbed gas on surface diffusion and nucleation, J. Appl Phys. 37, 275–279 (1966).Google Scholar
  118. 118.
    R. D. Gretz and G. M. Pound, Nucleation of crystals in multilayer metallic adsorbates, Appl. Phys. Letters 11, 67–69 (1967).Google Scholar
  119. 119.
    J. R. Arthur, Adsorption of Zn on GaAs, Surface Sci. 38, 394–412 (1973).Google Scholar
  120. 120.
    J. R. Arthur, Surface lifetime and desorption kinetics of gallium on tungsten, in Proc. 27th Conf. Phys. Electronics, MIT, Cambridge, Massachusetts, pp. 188–192 (1967).Google Scholar
  121. 121.
    J. R. Arthur, Interaction of Ga and As2 molecular beams with GaAs surfaces, J. Appl. Phys. 39, 4032–4034 (1968).Google Scholar
  122. 122.
    V. B. Voronin and A. G. Naumovets, Adsorption of yttrium atoms on a tungsten single crystal, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 355–358 (1971).Google Scholar
  123. 123.
    G. M. Martynkevich, Simple relations between heats of evaporation and fusion and dissociation energies of diatomic metal molecules, Russ. J. Phys. Chem. 44, 182–185 (1970).Google Scholar
  124. 124.
    E. W. Plummer and T. N. Rhodin, Atomic binding of transition metals on clean single-crystal tungsten surfaces, J. Chem. Phys. 49, 3479–3496 (1968).Google Scholar
  125. 125.
    P. C. Bettler and G. Barnes, Field-emission studies of surface migration for tungsten, rhenium, iridium and rhodium, Surface Sci. 10, 165–176 (1968).Google Scholar
  126. 126.
    G. Ayrault and G. Ehrlich, Surface self-diffusion at cryogenic temperatures: Rh on Rh, J. Chem. Phys. 57, 1788–1789 (1972).Google Scholar
  127. 127.
    E. Sugata and K. Takeda, Adsorption and nucleation of silver on tungsten, Phys. Stat. Sol. 38, 549–557 (1970).Google Scholar
  128. 128.
    H. Poppa, Heterogeneous nucleation of Bi and Ag on amorphous substrates (in situ electron microscopy studies), J. Appl. Phys. 38, 3883–3894 (1967).Google Scholar
  129. 129.
    R. D. Gretz and G. M. Pound, in Condensation and Evaporation of Solids ( E. Rutner, P. Goldfinger, and J. P. Hirth, eds.), pp. 575–597, Gordon and Breach, New York (1964).Google Scholar
  130. 130.
    D. Walton, T. N. Rhodin, and R. W. Rollins, Nucleation of silver on sodium chloride, J. Chem. Phys. 38, 2698–2704 (1963).Google Scholar
  131. 131.
    B, Lewis, Migration and capture processes in heterogeneous nucleation and growth. II. Comparison with experiment, Surface Sci. 21, 289–306 (1970).Google Scholar
  132. 132.
    R. S. Wagner and R. J. H. Voorhoeve, Adsorption and growth of cadmium on polycrystalline tungsten, J. Appl Phys. 42, 3948–3959 (1971).Google Scholar
  133. 133.
    T. T. A. Nguyen, R. Cinti, and B. K. Chakraverty, Condensation of indium films on silicon substrates observed by mass spectrometric technique, J. Crystal Growth 13–14, 174–179 (1972).Google Scholar
  134. 134.
    V. M. Gavrilyuk, Yu. S. Vedula, A. G. Naumovets, and A. G. Fedorus, Binding energy of Cs atoms adsorbed on (110) and (100) faces of a tungsten crystal, Soviet Phys.—Solid State 9, 881–883 (1967).Google Scholar
  135. 135.
    A. G. Fedorus, A. G. Naumovets, and Yu. S. Vedula, Adsorbed barium films on tungsten and molybdenum (001) face, Phys. Stat. Sol. (a) 13, 445–456 (1972).Google Scholar
  136. 136.
    G. Ehrlich and F. G. Hudda, Atomic view of surface self-diffusion: Tungsten on tungsten, J. Chem. Phys. 44, 1039–1049 (1966).Google Scholar
  137. 137.
    H. Schmeisser and M. Harsdorff, Untersuchung zur Keimbildung von Gold auf NaCl-Einkristallspaltflâchen im Ultrahochvakuum, Z. Naturforsch. 25a, 1896–1905 (1970).Google Scholar
  138. 138.
    G. G. Vladimirov and I. L. Sokol’skaya, Surface diffusion of Au on W in strong electric fields, Soviet Phys.—Solid State 12, 1224–1225 (1970).Google Scholar
  139. 139.
    J. P. Jones, in Surface Phenomena of Metals (S.C.I. Monograph No. 28), pp. 263–290, Society of Chemical Industry, London (1968).Google Scholar
  140. 140.
    J. A. Venables, Rate equation approaches to thin film nucleation kinetics, Phil. Mag. 27, 697–738 (1973).Google Scholar
  141. 141.
    W. L. Morris and R. L. Hines, Nucleation of gold on muscovite mica, J. Appl. Phys. 41, 2231–2235 (1970).Google Scholar
  142. 142.
    K. Hayek and U. Schwabe, Application of high-resolution shadow casting to the study of nucleation and growth of gold on sodium chloride, J. Vac. Sci. Technol. 9, 507–510 (1972).Google Scholar
  143. 143.
    L. W. Swanson, R. W. Strayer, and L. E. Davis, Desorption, mobility and work function change of mercury on tungsten and molybdenum substrates, Surface Sci. 9, 165–186 (1968).Google Scholar
  144. 144.
    B. Felts, Ph.D. Thesis, Université de Provence, unpublished, 1973.Google Scholar
  145. 145.
    J. R. Arthur, in Structure and Chemistry of Solid Surfaces (G. A. Somorjai, ed.), pp. 46.1–46. 17, Wiley, New York (1969).Google Scholar
  146. 146.
    Ts. S. Marinova and Yu. V. Zubenko, migration and evaporation of ytterbium and neodymium on tungsten, Soviet Phys.—Solid State 12, 401–403 (1970).Google Scholar
  147. 147.
    V. N. Shrednik and E. V. Snezhko, Field emission microscopy of Na on W under migration equilibrium conditions, Soviet Phys.—Solid State 6, 2727–2737 (1964).Google Scholar
  148. 148.
    J. Frenkel, Theorie der Adsorption und verwandter Erscheinungen, Z.Phys. 26 117–138(1924).Google Scholar
  149. 149.
    : K. A. Jackson, Private communication (1973).Google Scholar
  150. 150.
    R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics, pp. 421–445, Cambridge University Press (1965).Google Scholar
  151. 151.
    D. Walton, in Nucleation ( A. C. Zettlemoyer, ed.), pp. 379–404, Marcel Dekker, New York (1969).Google Scholar
  152. 152.
    R. J. H. Voorhoeve and R. S. Wagner, Adsorption, nucleation and growth of cadmium on tungsten covered with oxygen or hydrogen, Met. Trans. 2, 3421–3432 (1971).Google Scholar
  153. 153.
    B. K. Chakraverty, Heterogeneous nucleation on a substrate, Bull. Soc. Franc. Mineral. Cristallogr. 92, 547–557 (1969).Google Scholar
  154. 154.
    J. H. de Boer, The Dynamical Character of Adsorption, Clarendon, Oxford (1968).Google Scholar
  155. 155.
    G. M. Pound, M. T. Simnad, and L. Yang, Heterogeneous nucleation of crystals from the vapor, J. Chem. Phys. 22, 1215–1219 (1954).Google Scholar
  156. 156.
    R. A. Sigsbee, in Nucleation ( A. C. Zettlemoyer, ed.), pp. 151–224, Marcel Dekker, New York (1969).Google Scholar
  157. 157.
    R. Becker and W. Doering, Kinetische Behandlung der Keimbildung in uebersaettigten Daempfen, Ann. Phys. [5] 24, 719–752 (1935).Google Scholar
  158. 158.
    J. Zeldovich, Theory of the formation of a new phase, Zh. Eksperim. i Teor. Fiz. 12, 525–538 (1942).Google Scholar
  159. 159.
    D. R. Frankl and J. A. Venables, Nucleation on substrates from the vapour phase, Advan. Phys. 19, 409–456 (1970).Google Scholar
  160. 160.
    P. J. Pagni, Comparison of diffusion theory adsorption and desorption rate constants with experimental lifetimes, J. Chem. Phys. 58, 2940–2954 (1973).Google Scholar
  161. 161.
    J. L. Kenty and J. P. Hirth, The critical supersaturation concept applied to the nucleation of silver on sodium chloride, Trans. Met. Soc. AIME 245, 2373–2382 (1969).Google Scholar
  162. 162.
    D. Walton, Nucleation of vapor deposits, J. Chem. Phys. 37, 2182–2188 (1962).Google Scholar
  163. 163.
    B. Lewis, Bond energy formulations of heterogeneous nucleation theory, Thin Solid Films 1, 85–107 (1967).Google Scholar
  164. 164.
    B. Lewis, Analysis of In Situ electron miscroscopy studies of heterogeneous nucleation, I. Appl. Phys. 41, 30–35 (1970).Google Scholar
  165. 165.
    B. Lewis, Migration and capture processes in heterogeneous nucleation and growth. I. Theory, Surface Sci. 21, 273–288 (1970).Google Scholar
  166. 166.
    B. Lewis and D. S. Campbell, Nucleation and initial-growth behavior of thin-film deposits, J. Vac. Sci. Technol. 4, 209–218 (1967).Google Scholar
  167. 167.
    G. Zinsmeister, A contribution to Frenkel’s theory of condensation, Vacuum 16, 529–535 (1966).Google Scholar
  168. 168.
    G. Zinsmeister, Theory of thin film condensation. Part B: Solution of the simplified condensation equation, Thin Solid Films 2, 497–507 (1968).Google Scholar
  169. 169.
    G. Zinsmeister, Theory of thin film condensation. Part C: Aggregate size distribution in island films, Thin Solid Films 4, 363–386 (1969).Google Scholar
  170. 170.
    G. Zinsmeister, Zur Kinetik des Kondensationsvorganges, Kristall und Tech-nik 5, 207–251 (1970).Google Scholar
  171. 171.
    G. Zinsmeister. Theory of thin film condensation. Part D: Influence of a variable collision factor, Thin Solid Films 7, 51–75 (1971).Google Scholar
  172. 172.
    R. M. Logan, Saturation density of nuclei on a surface from the microscopic rate equations, Thin Solid Films 3, 59–75 (1969).Google Scholar
  173. 173.
    V. Halpern, Cluster growth and saturation island densities in thin film growth, I. Appl. Phys. 40, 4627–4636 (1969).Google Scholar
  174. 174.
    M. J. Stowell, The dependence of saturation nucleus density on deposition rate and substrate temperature in the case of complete condensation, Phil. Mag. 21, 125–136 (1970).Google Scholar
  175. 175.
    K. J. Routledge and M. J. Stowell, Nucleation kinetics in thin film growth. I. Computer simulation of nucleation and growth behavior, Thin Solid Films 6, 407–421 (1970).Google Scholar
  176. 176.
    M. J. Stowell and T. E. Hutchinson, Nucleation kinetics in thin film growth. II. Analytical evaluation of nucleation and growth behaviour, Thin Solid Films 8, 41–53 (1971).Google Scholar
  177. 177.
    M. J. Stowell and T. E. Hutchinson, Nucleation kinetics in thin film growth. III. Transient nucleation and nucleation on preferred substrate sites, Thin Solid Films 8, 411–425 (1971).Google Scholar
  178. 178.
    M. J. Stowell, Capture numbers in thin film nucleation theories, Phil. Mag. 26, 349–360 (1972).Google Scholar
  179. 179.
    M. J. Stowell, Thin film nucleation kinetics, Phil. Mag. 26, 361–374 (1972).Google Scholar
  180. 180.
    R. A. Sigsbee, Adatom capture and growth rates of nuclei, J. Appl. Phys. 42, 3904–3915 (1971).Google Scholar
  181. 181.
    B. N. Chapman and M. R. Jordan, Initial growth of thin films; the fractional nucleation rate concept, J. Phys. C: Solid State Phys. [2] 2, 1550–1559 (1969).Google Scholar
  182. 182.
    R. Vincent, A theoretical analysis and computer simulation of the growth of epitaxial films, Proc. Roy. Soc. (London) A 321, 53–68 (1971).Google Scholar
  183. 183.
    J. H. van der Merwe, in Single Crystal Films ( M. Francombe and H. Sato, eds.), pp. 139–163, Pergamon, London (1964).Google Scholar
  184. 184.
    J. W. Matthews, S. Mader and T. B. Light, Accommodation of misfit across the interface between crystals of semiconducting elements or compounds, J. Appl. Phys. 41, 3800–3804 (1970).Google Scholar
  185. 185.
    W. A. Jesser and D. Kuhlmann-Wilsdorf, On the theory of interfacial energy and elastic strain of epitaxial overgrowths in parallel alignment on single crystal substrates, Phys. Stat. Sol. 19, 95–105 (1967).Google Scholar
  186. 186.
    J. W. Matthews, The observation of dislocations to accommodate the misfit between crystals with different lattice parameters, Phil. Mag. 6, 1347–1349 (1961).Google Scholar
  187. 187.
    K. Yagi, K. Takayanagi, K. Kobayashi, and G. Honjo, In situ observation of formation of misfit dislocations in pseudomorphic monolayer overgrowth of metals and nonmetals, J. Crystal Growth 9, 84–97 (1971).Google Scholar
  188. 188.
    W. A. Jesser and J. W. Matthews, Growth of f.c.c. cobalt on nickel, Acta Met. 16, 1307–1311 (1968).Google Scholar
  189. 189.
    J. W. Matthews, Accommodation of misfit between single-crystal films of /5-cobalt and copper, Thin Solid Films 5, 369–378 (1970).Google Scholar
  190. 190.
    W. A. Jesser and J. W. Matthews, Pseudomorphic deposits of cobalt on copper, Phil. Mag. 17, 461–473 (1968).Google Scholar
  191. 191.
    W. A. Jesser and J. W. Matthews, Evidence for pseudomorphic growth of iron on copper, Phil. Mag. 15, 1097–1106 (1967).Google Scholar
  192. 192.
    W. A. Jesser and J. W. Matthews, Pseudomorphic growth of iron on hot copper, Phil. Mag. 17, 595–602 (1968).Google Scholar
  193. 193.
    J. W. Matthews and W. A. Jesser, A study of the f.c.c. to b.c.c. transformation in films of iron on nickel, Phil. Mag. 20, 999–1008 (1969).Google Scholar
  194. 194.
    E. F. Wassermann and H. P. Jablonski, Epitaxial growth of iron on (100) and (111) gold substrates, Surface Sci. 22, 69–75 (1970).Google Scholar
  195. 195.
    J. W. Matthews and J. L. Crawford, Accommodation of misfit between single-crystal films of nickel and copper, Thin Solid Films 5, 187–198 (1970).Google Scholar
  196. 196.
    W. A. Jesser and J. W. Matthews, Pseudomorphic deposits of chromium on nickel, Phil. Mag. 17, 475–479 (1968).Google Scholar
  197. 197.
    J. W. Matthews, in Single Crystal Films ( M. Francombe and H. Sato, eds.), pp. 165–172, Pergamon, London (1964).Google Scholar
  198. 198.
    J. W. Matthews and W. A. Jesser, Experimental evidence for pseudomorphic growth of platinum on gold, Acta Met. 15, 595–600 (1967).Google Scholar
  199. 199.
    J. W. Matthews, Imperfect misfit dislocations in thin films of silver on palladium, J. Appl. Phys. 42, 5640–5643 (1971).Google Scholar
  200. 200.
    A. J. Melmed and R. F. McCarthy, Field emission Microscopy of silver nucleation and epitaxial growth on tungsten, J. Chem. Phys. 42, 1466–1467 (1965).Google Scholar
  201. 201.
    C. M. Lo and J. B. Hudson, The adsorption and nucleation of silver on tungsten (110), Thin Solid Films 12, 261–266 (1972).Google Scholar
  202. 202.
    R. D. Gretz, in Molecular processes on solid surfaces ( E. Drauglis, R. D. Gretz, and R. I. Jaffee, eds.), pp. 425–445, McGraw-Hill, New York (1969).Google Scholar
  203. 203.
    H. M. Montague-Pollock, T. N. Rhodin, and M.J. Southon, Some properties of thin metal films observed by field-ion and field emission microscopy, Surface Sci. 12, 1–18 (1968).Google Scholar
  204. 204.
    A. J. Melmed, Epitaxial growth of Pb on W field emitters, J. Chem. Phys. 42, 3332–3333 (1965).Google Scholar
  205. 205.
    A. J. Melmed, Field emission from epitaxially grown yttrium on tungsten, J. Less Common Metals 8, 320–326 (1965).Google Scholar
  206. 206.
    J. S. Sandejas and J. B. Hudson, Heterogeneous nucleation in thick adlayers, Surface Sci. 11, 175–187 (1968).Google Scholar
  207. 207.
    G. D. W. Smith, Pseudomorphism in ultra-thin metal films, Surface Sci. 35, 304–318 (1973).Google Scholar
  208. 208.
    L. Sogor and A. G. Walton, Mechanism of heterogeneous nucleation. I. Vapor-liquid and liquid-solid transformation of benzene catalyzed by KC1, Surface Sci. 25, 337–347 (1971).Google Scholar
  209. 209.
    P. D. Ownby and R. D. Gretz, Adsorption and nucleation of boron triiodide on tungsten, Surface Sci. 12, 141–156 (1968).Google Scholar
  210. 210.
    J. L. Robertson and B. A. Unvala, Non-crystalline to crystalline transformation in zinc, cadmium and tin, Phil. Mag. 24, 1253–1256 (1971).Google Scholar
  211. 211.
    M. Blackman and N. D. Lisgarten, Electron diffraction investigations into the cubic and other structural forms of ice. Advan. Phys. 7, 189–198 (1958).Google Scholar
  212. 212.
    M. R. Hoare and P. Pal, Statistics and stability of small assemblies of atoms, J. Cryst. Growth 17, 77–96 (1972).Google Scholar
  213. 213.
    J. B. Hudson and C. M. Lo, The adsorption of silver on tungsten (110), Surface Sci. 36, 141–154 (1973).Google Scholar
  214. 214.
    P. W. Palmberg and T. N. Rhodin, Atomic arrangement of Au (100) and related metal overlayer surface structures, J. Chem. Phys. 49, 132–146 (1968).Google Scholar
  215. 215.
    A. J. W. Moore, Nucleation of solids from the vapour phase, J. Austral. Inst. Metals 11, 220–226 (1966).Google Scholar
  216. 216.
    R. C. Feber, L. D. F. Allen, and D. Grimmer, Monte Carlo simulation of the nucleation of thin films, I. Vac. Sci. Technol. 8, 397–402 (1970).Google Scholar
  217. 217.
    A. C. Adams and K. A. Jackson, Computer simulation of vapor deposition, J. Crystal Growth 13/14, 144–147 (1972).Google Scholar
  218. 218.
    T. J. Coutts and B. Hopewell, Monte-Carlo studies of thin film growth, Thin Solid Films 9, 37–55 (1971).Google Scholar
  219. 219.
    R. C. Cinti, B. K. Chakraverty, and G. Bassi, Structure et orientation des noyaux elementaires sur un substrat cristallin, Surface Sci. 20, 235–244 (1970).Google Scholar
  220. 220.
    T. Johannesson and B. Persson, Computer simulation of nucleation and growth of atom clusters in thin films, Physica Scripta 2, 209–312 (1970).Google Scholar
  221. 221.
    T. Johannesson and B. Persson, Computer simulation of epitaxial nucleation, Phys. Stat. Sol. 3, k251 - k254 (1970).Google Scholar
  222. 222.
    W. A. Jesser and J. W. Matthews, Growth of copper, silver and gold on twelve alkali halides cleaved in vacuum, J. Crystal Growth. 5, 83–89 (1969).Google Scholar
  223. 223.
    A. Y. Cho and C. D. Hendricks, Mean adsorption lifetimes and activation energies of silver and gold on clean, oxygenated, and carburized tungsten surfaces, J. Appl. Phys. 40, 3339–3345 (1969).Google Scholar
  224. 224.
    P. A. Redhead, Thermal desorption of gases, Vacuum 12, 203–211 (1962).Google Scholar
  225. 225.
    G. Carter, Thermal resolution of desorption energy spectra, Vacuum 12, 245–254 (1962).Google Scholar
  226. 226.
    J. B. Hudson and J. S. Sandejas, Observation of adsorption and crystal nucleation by mass-spectrometric techniques, J. Vac. Sci. Technol. 4, 230–238 (1967).Google Scholar
  227. 227.
    J. R. Arthur, Surface stoichiometry and structure of GaAs, unpublished (1973).Google Scholar
  228. 228.
    A. Y. Cho, Morphology of epitaxial growth of GaAs by a molecular beam method: the observation of surface structures, J. Appl. Phys. 41, 2780–2786 (1970).Google Scholar
  229. 229.
    A. Y. Cho, GaAs epitaxy by a molecular beam method: observations of surface structure on the (001) face, /. Appl. Phys. 42, 2074–2081 (1971).Google Scholar
  230. 230.
    R. J. H. Voorhoeve, J. N. Carides, and R. S. Wagner, Kinetics and thermodynamics of thin-film deposition by molecular beam methods. II. Nucleation, growth, and evaporation of cadmium on germanium single crystals, J. Appl. Phys. 43, 4886–4900 (1972).Google Scholar
  231. 231.
    R. J. H. Voorhoeve and J. N. Carides, Whisker and island growth of cadmium on (211) germanium, Crystal Growth 16, 195–202 (1972).Google Scholar
  232. 232.
    T. J. Lee and R. E. Stickney, Molecular beam study of the desorption of cesium ions from tungsten crystals, Surface Sci. 32, 100–118 (1972).Google Scholar
  233. 233.
    J. B. Taylor, The reflection of beams of the alkali metals from crystals, Phys. Rev. 35, 375–380 (1930).Google Scholar
  234. 234.
    H. Dabringhaus and H. J. Meyer, Untersuchung der Kondensation, und Verdampfung von Alkalihalogenid-Kristallen mit Molekularstrahlmethoden I., J. Crystal Growth 16, 17–30 (1972).Google Scholar
  235. 235.
    L. L. Levenson, L. E. Davis, C. E. Bryson, J. J. Melles, and W. H. Kou, A quantitative study of Auger electron signals of phosphorus on silicon using a quartz crystal microbalance, J. Vac. Sci. Technol. 9, 608–611 (1972).Google Scholar
  236. 236.
    V. Cazcarra, C. E. Bryson, and L. L. Levenson, Sticking coefficient of C02 on solid H20 films, J. Vac. Sci. Technol. 10, 148–152 (1973).Google Scholar
  237. 237.
    L. E. Davis, L. L. Levenson, and J. J. Melles, A study of phosphorus adsorption and desorption kinetics on silicon (111) surfaces, J. Crystal Growth 17, 354–356 (1972).Google Scholar
  238. 238.
    D. L. Smith and D. A. Huchital, Adsorption kinetics of Cs on GaAs, J. Appl. Phys. 43, 2624–2628 (1972).Google Scholar
  239. 239.
    H. Poppa and A. G. Elliot, The surface composition of mica substrates, Surface Sci. 24, 149–163 (1971).Google Scholar
  240. 240.
    B. A. Joyce and R. R. Bradley, A study of nucleation in chemically grown epitaxial silicon films using molecular beam techniques. I. Experimental methods, Phil. Mag. 14, 289–299 (1966).Google Scholar
  241. 241.
    P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals, Butterworths, London (1965).Google Scholar
  242. 242.
    H. Poppa, K. Heinemann, and A. G. Elliot, Epitaxial orientation studies of gold on UHV-cleaved mica during early stages of nucleation and growth, J. Vac. Sci. Technol. 8, 471–480 (1971).Google Scholar
  243. 243.
    H. Poppa, R. D. Moorhead, and K. Heinemann, Experimental approaches to well controlled studies of thin-film nucleation and growth, Nuclear Instr. Methods 102, 521–538 (1972).Google Scholar
  244. 244.
    M. J. Stowell, Direct observations of epitaxial growth, Thin Solid Films 12, 341–354 (1972).Google Scholar
  245. 245.
    G. A. Bassett, in Condensation and Evaporation of Solids ( E. Rutner, P. Goldfinger, and J. P. Hirth, eds.), pp. 599–617, Gordon and Breach, New York (1964).Google Scholar
  246. 246.
    U. Valdre, E. A. Robinson, D. W. Pashley, M. J. Stowell, and T. J. Law, An ultra-high vacuum electron microscope specimen chamber for vapour-deposition studies, J. Phys. E: Sci. Instr. 3, 501–506 (1970).Google Scholar
  247. 247.
    J. A. Venables and D. J. Ball, Nucleation and growth of rare-gas crystals, Proc. Roy. Soc. (London) A 322, 331–354 (1971).Google Scholar
  248. 248.
    R. B. Marcus, T. T. Sheng, and C. J. Calbick, A high vacuum large volume specimen chamber for an electron microscope. I. Phys. E: Sci. Instr. 5, 234–237 (1972).Google Scholar
  249. 249.
    D. N. Braski, High-vacuum evaporation stage for an electron microscope, J. Vac. Sci. Technol. 7, 164–169 (1970).Google Scholar
  250. 250.
    G. Honjo and K. Yagi, Studies of epitaxial growth of metallic and non-metallic films by means of high-resolution cine and still-electron microscopy, J. Vac. Sci. Technol. 6, 576–582 (1969).Google Scholar
  251. 251.
    M. H. Jacobs, D. W. Pashley, and M. J. Stowell, The formation of imperfections in epitaxial gold films, Phil. Mag. 13, 129–156 (1966).Google Scholar
  252. 252.
    J. A. Venables and C. A. English, Thin films of condensed gases, Thin Solid Films 7, 369–389 (1971).Google Scholar
  253. 253.
    H. M. Kramer and J. A. Venables, Epitaxial growth of rare gas crystals, J. Crystal Growth 17, 329–332 (1972).Google Scholar
  254. 254.
    A. Y. Cho, Film deposition by molecular-beam techniques, J. Vac. Sci. Technol. 8, S31 - S38 (1971).Google Scholar
  255. 255.
    A. Y. Cho, M. B. Panish, and I. Hayashi, Molecular beam epitaxy of GaAs, AlxGa1−x As and GaP, in Third Int. Symp. on GaAs and Related Compounds, Aachen, Germany, pp. 18–28 (1970).Google Scholar
  256. 256.
    A. Y. Cho, Film deposition by molecular-beam techniques, I. Vac. Sci. Technol. 8, S31 - S38 (1971).Google Scholar
  257. 257.
    R. C. Henderson, R. B. Marcus, and W. J. Polito, Carbide contamination of silicon surfaces, J. Appl. Phys. 42, 1208–1215 (1971).Google Scholar
  258. 258.
    G. H. Hill, I. Marklund, J. Martinson and B.J. Hopkins, Simultaneous LEED and RHEED studies of the growth of zirconium on the tungsten (100) surface, Surface Sci. 24, 435–450 (1971).Google Scholar
  259. 259.
    M. F. Tompsett, D. E. Sedgewick, and J. St. Noblp, A versatile high energy scanning electron diffraction system for observing thin film growth in ultra-high vacuum and in a low gas pressure, I. Phys. E: Sci. Instr. [2] 2, 587–590 (1969).Google Scholar
  260. 260.
    M. F. Tompsett, Review: Scanning high-energy electron diffraction (SHEED) in materials science, J. Materials Sci. 7, 1069–1079 (1972).Google Scholar
  261. 261.
    M. F. Tompsett and C. W. B. Grigson, Reflection scanning electron diffraction with energy filtering, J. Sci. Instr. 43, 430–435 (1966).Google Scholar
  262. 262.
    M. B. Heritage and M. F. Tompsett, Small-angle electron diffraction of very thin growing films, Appl. Phys. 41, 407–414 (1970).Google Scholar
  263. 263.
    V. M. Kivilis, E. S. Parilis, and N. Yu. Turaev, A model for the reflection of ions from a single crystal, Soviet Phys.—Doklady 12, 328–330 (1967).Google Scholar
  264. 264.
    V. E. Yurasova, V. I. Shulga, and D. S. Karpuzov, Ion reflection from a single crystal, Can. J. Phys. 46, 759–772 (1968).Google Scholar
  265. 265.
    S. H. A. Begemann, Ion scattering for the analysis of the atomic structure and composition of solid surfaces, Thesis, Univ. Groningen (1972).Google Scholar
  266. 266.
    T. M. Buck and J. M. Poate, Ion scattering for analysis of surfaces and surface layers, J. Vac. Sci. Technol. 11, 289–296 (1974).Google Scholar
  267. 267.
    H. H. Brongersma and P. M. Mul, Analysis of the outermost atomic layer of a surface by low-energy ion scattering, Surface Sci. 35, 393–412 (1973).Google Scholar
  268. 268.
    S. H. A. Begemann and A. L. Boers, Small angle multiple reflection of low energy (6 keV) noble gas ions from single crystal surfaces as a means to study surface texture and contamination, Surface Sci. 30, 134–160 (1972).Google Scholar
  269. 269.
    S. H. A. Begemann and A. L. Boers, Surface composition and structure analysis with a one-apparatus ion probe technique, Surface Sci. 32, 607–617 (1972).Google Scholar
  270. 270.
    S. H. A. Begemann, J. A. van den Berg, and A. L. Boers, Ion scattering study of the structure and composition of a (100) NaCl surface before and after vapour deposition of Cu, Surface Sci. 32, 595–606 (1972).Google Scholar
  271. 271.
    G. Ehrlich, in Interatomic Potentials and Simulation of Lattice Defects ( P. C. Gehler, J. R. Beeler, and R. I. Jaffee, eds.), pp. 573–619, Plenum, New York (1972).Google Scholar
  272. 272.
    E. W. Miiller and T. T. Tsong, Field Ion Microscopy, Principles and Applications, American Elsevier, New York (1969).Google Scholar
  273. 273.
    H. M. M. Pollock, Field emission and field-ion microscopy as a tool for thin-film and surface studies, Thin Solid Films 14, 193–209 (1972).Google Scholar
  274. 274.
    D. W. Bassett and M. J. Parsley, Field ion microscope observations of cluster formation in metal deposits on tungsten surfaces, Nature 221, 1046 (1969).Google Scholar
  275. 275.
    T. T. Tsong, Interaction of individual metal atoms on tungsten surfaces, J. Chem. Phys. 55, 4658–4659 (1971).Google Scholar
  276. 276.
    D. W. Bassett, The use of field ion microscopy in studies of the vapour deposition of metals, Surface Sci. 23, 240–258 (1970).Google Scholar
  277. 277.
    J. P. Jones, Arrangement of atoms in the first monolayer of nickel on tungsten, Nature 211, 479–481 (1966).Google Scholar
  278. 278.
    G. D. W. Smith and J. S. Anderson, Field emission and field ion microscope studies of the epitaxial growth of nickel on tungsten, Surface Sci. 24, 459–483 (1971).Google Scholar
  279. 279.
    E. Sugata, S. Ishii, and K. Masui, Initial growth of platinum crystals on the tungsten surface as observed by the field-ion microscope, Surface Sci. 24, 612–624 (1971).Google Scholar
  280. 280.
    W. R. Graham, F. Hutchinson, J. J. Nadakavukaren, D. A. Reed, and S. W. Schwerterly, Epitaxial deposition of platinum on iridium at low temperatures, J. Appl. Phys. 40, 3931–3936 (1969).Google Scholar
  281. 281.
    W. R. Graham, D. A. Reed, and F. Hutchinson, Epitaxy at low temperatures by vapor deposition of Pd, Pt, Rh and Ir observed by field ion microscopy, J. Appl. Phys. 43, 2951–2956 (1972).Google Scholar
  282. 282.
    L. E. Murr, O. T. Inal, and H. P. Singh, A field ion microscope study of vapor-deposited platinum, Thin Solid Films 9, 241–256 (1972).Google Scholar
  283. 283.
    J. P. Jones, The adsorption of copper on tungsten, Proc. Roy. Soc. (London) 284A, 469–487 (1965).Google Scholar
  284. 284.
    A. J. Melmed, Nucleation and epitaxial growth of Cu on W, J. Appl. Phys. 36, 3585–3589 (1965).Google Scholar
  285. 285.
    W. M. Franklin and K. R. Lawless, in Fundamentals of Gas-Surface Interactions ( H. Saltzburg, J. N. Smith, and M. Rogers, eds.), pp. 132–146, Academic Press, New York (1967).Google Scholar
  286. 286.
    M. Paunov and E. Michailov, Feldelektronenmikroskopische Untersuchung der heterogenen Silberkeimbildung, Kristall u. Technik. 3, 513–524 (1968).Google Scholar
  287. 287.
    K. L. Moazed and G. M. Pound, Field-emission microscopy of metal crystal nucleation, Trans. Met. Soc. AIME 230, 234–239 (1964).Google Scholar
  288. 288.
    I. L. Sokol’skaya, Adsorption, migration and evaporation of cadmium on tungsten, Soviet Phys.—Solid State 3, 574–579 (1961).Google Scholar
  289. 289.
    S. C. Hardy, in Proc. Intern. Conf. Crystal Growth, Boston, 1966 ( H. S. Peiser, ed.), pp. 287–294, Pergamon, London, 1967.Google Scholar
  290. 290..
    H. Kim, H. Araki, and E. Sugata, Studies on adsorption and nucleation of Ge on tungsten surface by FEM, Japan J. Appl. Phys. 9, 1445–1452 (1970).Google Scholar
  291. 291..
    J. R. Anderson and N. Thomson, Study of adsorption of titanium on tungsten and rhenium by field electron emission, Surface Sci. 26, 397–414 (1971).Google Scholar
  292. 292.
    . R. A. Collins and B. H. Blott, The adsorption and nucleation of zirconium on tungsten field emitters, Surface Sci. 10, 349–368 (1968).Google Scholar
  293. 293..
    R. A. Collins and B. H. Blott, Adsorption of zirconium on tungsten single crystal planes, J. Phys. D: Appl. Phys. 4, 114–117 (1971).Google Scholar
  294. 294..
    R. A. Collins and B. H. Blott, Adsorption of uranium on tungsten single crystal planes, J. Phys. D: Appl. Phys. 4, 102–113 (1971).Google Scholar
  295. 295.
    A. J. Melmed and J. J. Carroll, Elipsometry, LEED and FEM study of evaporated epitaxial films of iron on (011) tungsten, Surface Sci. 19, 243–248 (1970).Google Scholar
  296. 296.
    D. C. Gupta, Improved methods of depositing vapor-phase homo-epitaxial silicon, Solid State Technol .14 33–40 (i971).Google Scholar
  297. 297.
    F. Jona, Reactions of silicon with surfaces of close packed metals: silicon on aluminum, J. Appl. Phys. 42, 2557–2561 (1971).Google Scholar
  298. 298.
    O. F. Swenson and M. K. Sinha, Field emission study of silicon on tungsten, J. Vac. Sci. Technol. 9, 235–237 (1966).Google Scholar
  299. 299..
    F. Jona, Study of the early stages of the epitaxy of silicon on silicon, Appl. Phys. Letters 9, 235–237 (1966).Google Scholar
  300. 300..
    R. N. Thomas and M. H. Francombe, Influence of impurities on the surface structures and fault generation in homoepitaxial Si (111) films, Surface Sci. 25, 357–378 (1971).Google Scholar
  301. 301..
    B. A. Joyce, R. R. Bradley, and G. R. Booker, A study of nucleation in chemically grown epitaxial silicon films using molecular beam techniques. III. Nucleation rate measurements and the effect of oxygen on initial growth behavior, Phil. Mag. 15, 1167–1187 (1967).Google Scholar
  302. 302.
    G. R. Booker and B. A. Joyce, A study of nucleation in chemically grown epitaxial silicon films using molecular beam techniques. II. Initial growth behavior on clean and carbon-contaminated silicon substrates, Phil. Mag. 14, 301–315 (1966).Google Scholar
  303. 303.
    R. J. Bennett and R. W. Gale, Kinetics of the induction period for the nucleation of silicon on (111) silicon substrates at UHV, Phil. Mag. 22, 135–142 (1970).Google Scholar
  304. 304.
    B. A. Joyce, J. H. Neave, and B. E. Watts, The influence of substrate surface conditions on the nucleation and growth of epitaxial silicon films. Surface Sci. 15, 1–13 (1969).Google Scholar
  305. 305.
    H. Widmer, Epitaxial growth of Si on Si in ultra-high vacuum, Appl. Phys. Letters 5, 108–110 (1964).Google Scholar
  306. 306.
    G. N. Gridneva and N. E. Zahharova, Low-temperature isoepitaxial growth of silicon by condensation from a molecular beam in ultrahigh vacuum, Soviet Phys.—Crystallogr. 17, 910–912 (1973).Google Scholar
  307. 307.
    V. A. Tolomasov, L. N. Abrosimova, and G. N. Gorshenin, Epitaxial films of n-type silicon obtained by vacuum sublimation, Soviet Phys.—Crystallogr. 15, 1076–1080 (1971).Google Scholar
  308. 308.
    V. P. Kuznetsov, V. V. Postnikov, and V. A. Tolomasov, Silicon layers produced by vacuum sublimation at 430–600°C, Soviet Phys.—Crystallogr. 15, 335–336 (1970).Google Scholar
  309. 309.
    J. Washburn, G. Thomas, and H. J. Queisser, Diffusion-induced dislocations in silicon, J. Appl. Phys. 35, 1909–1914 (1964).Google Scholar
  310. 310.
    Y. Sugita, M. Tamura, and K. Sugawara, Misfit dislocations in bicrystals of epitaxially grown silicon on boron doped silicon substrates, J. Appl. Phys. 40, 3089–3094 (1969).Google Scholar
  311. 311.
    H. F. Matare, Heteroepitaxy II, Sci. Elec. 15, 129–145 (1969).Google Scholar
  312. 312.
    R. W. Lawson and D. M. Jefkins, The optimum conditions for the vacuum deposition of silicon on sapphire, J. Phys. D: Appl. Phys. 3, 1627–1640 (1970).Google Scholar
  313. 313.
    C. C. Chang, Silicon-on-sapphire epitaxy by vacuum sublimation: LEED- Auger studies and electronic properties of the films, J. Vac. Sci. Technol. 8, 500–511 (1971).Google Scholar
  314. 314.
    C. C. Chang, in The Structure and Chemistry of Solid Surfaces, (G. A. Somorjai, ed.), pp. 77.1–77. 14, Wiley, New York (1969).Google Scholar
  315. 315.
    D.J. Dumin and P. Robinson, Autodoping of silicon films grown epitaxially on sapphire, J. Electrochem. Soc. 113, 469–472 (1966).Google Scholar
  316. 316.
    Y. Takeishi, I. Sasaki, and K. Hirabayashi, A low-energy electron diffraction study of the epitaxial silicon layers on a Ge (111) surface, Appl. Phys. Letters 11, 330–332 (1967).Google Scholar
  317. 317.
    G. Shimaoka and S. C. Chang, Structure of silicon films evaporated onto a clean NaCl substrate, J. Vac. Sci. Technol. 9, 235–238 (1972).Google Scholar
  318. 318.
    F. Jona and H. R. Wendt, Radioactive method for the determination of sticking coefficients: Ge on Ge (111), Surface Sci. 24, 343–349 (1971).Google Scholar
  319. 319.
    G. O. Krause, Epitaxial growth behavior of Ge on Si (111) surfaces, Phys. Stat. Sol. (a) 3, 907–911 (1970).Google Scholar
  320. 320.
    A. G. Cullis, Ph.D. Thesis, Oxford, 1972.Google Scholar
  321. 321.
    G. Shimaoka and S. C. Chang, Structure of germanium films evaporated onto clean NaCl substrates, J. Vac. Sci. Technol. 8, 243–247 (1971).Google Scholar
  322. 322.
    S. Mader, Multiple twinning and pentagonal structures in germanium, J. Vac. Sci. Technol. 8, 247–250 (1971).Google Scholar
  323. 323.
    N. Nicolaou and A. Modinos, Field emission from tungsten covered with germanium layers of atomic thickness, J. Phys. C: Solid State Phys. 4, 2859–2874 (1971).Google Scholar
  324. 324.
    I. L. Sokol’skaya and N. V. Mileshkina, Field emission of electrons from thin layers of germanium on tungsten, Soviet Phys.—Solid State 3, 2460–2465 (1962).Google Scholar
  325. 325.
    J. R. Arthur and J. J. LePore, GaAs, GaP and GaAsxP1−x epitaxial films grown by molecular beam deposition, J. Vac. Sci. Technol. 6, 545–548 (1969).Google Scholar
  326. 326.
    A. Y. Cho and I. Hayashi, Surface structures and photoluminescence of molecular beam epitaxial films of GaAs, Solid-State Electronics 14, 125–132 (1971).Google Scholar
  327. 327.
    A. Y. Cho and S. E. Stokowsk, Molecular beam epitaxy and optical evaluation of AlxGa1−xAs, Solid State Commun. 9, 565–568 (1971).Google Scholar
  328. 328.
    A. Y. Cho and I. Hayashi, Epitaxy of silicon doped gallium arsenide by molecular beam method, Met. Trans. 2, 777–780 (1971).Google Scholar
  329. 329.
    A. Y. Cho and I. Hayashi, P-N junction formation during molecular-beam epitaxy of Ge-doped GaAs, J. Appl. Phys. 42, 4422–4425 (1971).Google Scholar
  330. 330.
    A. Y. Cho and M. B. Panish, Magnesium-doped GaAs and AlxGa1−xAs by molecular beam epitaxy, J. Appl. Phys. 43, 5118–5123 (1972).Google Scholar
  331. 331.
    M. S. Abrahams, L. R. Weisberg. C. J. Buiocchi, and J. Blanc, Dislocation morphology in graded heterojunctions: GaAs1−xPx, J. Materials Sci. 4, 223–235 (1969).Google Scholar
  332. 332.
    P. M. Petroff and R. L. Hartman, Defect structures introduced during operation of heterojunction GaAs lasers, Appl. Phys. Letters 23, 469–471 (1973).Google Scholar
  333. 333.
    G. A. Rozgonyi, P. M. Petroff; and M. B. Panish, Elimination of dislocations in heteroepitaxial layers by the controlled introduction of interfacial misfit dislocations (1973), to be published.Google Scholar
  334. 334.
    T. G. R. Rawlins, The epitaxy of zinc sulphide on silicon, J. Materials Sci. 5, 881–890 (1970).Google Scholar
  335. 335.
    J. T. Calow, D. L. Kirk, and S. J. T. Owen, The growth of epitaxial ZnSe upon germanium substrates, Thin Solid Films 9, 409–429 (1972).Google Scholar
  336. 336.
    M. I. Abdalla, D. B. Holt., and D. M. Wilcox, Epitaxial growth and structure of CdS films evaporated onto Ge, J. Materials Sci. 8, 590–600 (1973).Google Scholar
  337. 337.
    H. Sato and S. Shinozaki, interfacial energy as a factor in controlling epitaxial behaviour, Surface Sci. 22, 229–252 (1970).Google Scholar
  338. 338.
    D. Walton, The orientation of vapour deposits, Phil. Mag. 7, 1671–1679 (1962).Google Scholar
  339. 339.
    C. A. O. Henning and J. S. Vermaak, The role of the substrate surface layer in the process of epitaxy. Part II. Substrate structure and formation of epitaxial films, Phil. Mag. 22, 281–289 (1970).Google Scholar
  340. 340.
    U. Schwabe and K. Hayek, Surface diffusion of adatoms and clusters of gold on alkali halide cleavage planes, Thin Solid Films 12, 403–410 (1972).Google Scholar
  341. 341.
    T. Kato and S. Ogawa, The structure of cobalt films formed on rocksalt and mica by vacuum evaporation, Japan J. Appl. Phys. 9, 875–878 (1970).Google Scholar
  342. 342.
    J. Forssell and B. Persson, Growth and structure of thin chromium films condensed on ultra-high vacuum cleaved NaCl and KC1 crystals, J. Phys. Soc. Japan 29, 1532–1545 (1970).Google Scholar
  343. 343.
    G. Pilkington and J. P. Hirth, Epitaxial deposition of silver on molybdenite, Surface Sci. 29, 363–378 (1972).Google Scholar
  344. 344.
    T. P. Darby and C. M. Wayman, The growth of Au films on graphite, Phys. Stat. Sol. (a) 1, 729–748 (1970).Google Scholar
  345. 345.
    V. N. E. Robinson and J. L. Robins, Nucleation Kinetics of gold deposition onto UHV cleaved surfaces of KC1 and NaF, Thin Solid Films 5, 313–327 (1970).Google Scholar
  346. 346.
    G. G. Sumner, Effects of substrate temperature on the growth of thin platinum deposits on rock salt, Phil. Mag. 12, 767–775 (1965).Google Scholar
  347. 347.
    T. Inuzuka and R. Ueda, Nucleation of gold deposits on alkali halide crystals, J. Phys. Soc. Japan 25, 1299–1307 (1968).Google Scholar
  348. 348.
    P. T. Stroud, Nucleation and critical condensation phenomena of silver on silicon oxide, J. Phys. C: Solid State Phys. 4, 577–583 (1971).Google Scholar
  349. 349.
    J. L. Robins and A. J. Donohoe, An experimental study of the growth kinetics of vapour-deposited thin metal films, Thin Solid Films 12, 255–259 (1972).Google Scholar
  350. 350.
    H. Schmeisser and M. Harsdorff, Note on “Rate equation approaches to thin film nucleation kinetics” by J. A. Venables, Phil. Mag. 27, 739–743 (1973).Google Scholar
  351. 351.
    J. L. Sacedon, Evolution of nucleus size in the first stages of silver growth on graphite, Thin Solid Films 12, 267–271 (1972).Google Scholar
  352. 352.
    J. L. Sacedon and C. S. Martin,.Size distribution of nuclei in silver films on graphite, Thin Solid Films 10, 99–107 (1972).Google Scholar
  353. 353.
    R. L. Schwoebel, Condensation of gold on gold single crystals, Surface Sci. 2, 356–366 (1964).Google Scholar
  354. 354.
    U. Gradmann, Struktur und Ferromagnetismus sehr diinner, epitaktischer Ni-Flachenschichten, Ann. Phys. Leipzig 17, 91–106 (1966).Google Scholar
  355. 355.
    R. L. Gerlach and T. N. Rhodin, in The Structure and Chemistry of Solid Surfaces (G. A. Somorjai, ed.) pp. 55.1–55. 25, Wiley, New York (1969).Google Scholar
  356. 356.
    R. L. Gerlach and T. N. Rhodin, Structure analysis of alkali metal adsorption on single crystal nickel surfaces, Surface Sci. 17, 32–68 (1969).Google Scholar
  357. 357.
    Y. de Ribaupierre and J. P. Borel, Etats d’adsorption a faible densité du potassium sur le cuivre, Surface Sci. 29, 265–276 (1972).Google Scholar
  358. 358.
    T. A. Callcott and A. U. MacRae, Photoemission from clean and cesium-covered nickel surfaces, Phys. Rev. 178, 966–978 (1969).Google Scholar
  359. 359.
    J. Henrion and G. E. Rhead, LEED studies of the first stage of deposition and melting of lead on low index faces of copper, Surface Sci. 29, 20–36 (1972).Google Scholar
  360. 360.
    J. Perdereau and I. Szymerska. LEED study of lead monolayers on low index surfaces of nickel, Surface Sci. 32, 247–252 (1972).Google Scholar
  361. 361.
    F. Delamare and G. E. Rhead, First stages of the deposition of bismuth on copper examined by LEED. I. The (100) substrate, Surface Sci. 35, 172–184 (1973).Google Scholar
  362. 362.
    F. Delamare and G. E. Rhead, First stages of the deposition of bismuth on copper examined by LEED. II. The (111) substrate, Surface Sci. 35, 185–193 (1973).Google Scholar
  363. 363.
    D. E. Anderson and S. Andersson, Two-dimensional layers of tellurium on a copper (001) surface, Surface Sci. 23, 311–319 (1970).Google Scholar
  364. 364.
    J. D. Levine and E. P. Gyftopoulos, Adsorption physics of metallic surfaces partially covered by metallic particles. I. Atom and ion desorption energies, Surface Sci. 1, 171–193 (1964).Google Scholar
  365. 365.
    E. P. Gyftopoulos and J. D. Levine, Work function variation of metals coated by metallic films, J. Appl. Phys. 33, 67–73 (1962).Google Scholar
  366. 366.
    E. P. Gyftopoulos and D. Steiner,in Proc. 27th Annual Conf. Physical Electronics,Cambridge,Massachusetts, p. 160 (1967).Google Scholar
  367. 367.
    Z. Sidorski, I. Pelly, and R. Gomer, Adsorption of Cs on tungsten, measurements on single-crystal planes, J. Chem. Phys. 50, 2382–2391 (1969).Google Scholar
  368. 368.
    L. D. Schmidt and R. Gomer, Neutral and ionic desorption of cesium from tungsten, /. Chem. Phys. 43, 2055–2063 (1965).Google Scholar
  369. 369.
    L. D. Schmidt and R. Gomer, Adsorption of potassium on tungsten: measurements on single-crystal planes, J. Chem. Phys. 45, 1605–1623 (1966).Google Scholar
  370. 370.
    L. Schmidt and R. Gomer, Adsorption of potassium on tungsten, J. Chem. Phys. 42, 3573–3598 (1965).Google Scholar
  371. 371.
    A. U. MacRae, K. Miiller, J. J. Lander, and J. Morrison, An electron diffraction study of cesium adsorption on tungsten, Surface Sci. 15, 483–497 (1969).Google Scholar
  372. 372.
    V. K. Medvedev, A. G. Naumovets, and A. G. Fedorus, Structure and adsorption behavior of sodium films on (011) faces of tungsten, Soviet Phys.—Solid State 12, 301–306 (1970).Google Scholar
  373. 373.
    S. Thomas and T. W. Haas, Quantitative AES and LEED study of alkali metal overlayers on W (100), J. Vac. Sci. Technol. 10, 218–222 (1973).Google Scholar
  374. 374.
    A. R. L. Moss and B. H. Blott, The epitaxial growth of copper on the (110) surface of a tungsten single crystal studied by LEED, Auger electron, and work function techniques, Surface Sci. 17, 240–261 (1969).Google Scholar
  375. 375.
    A. G. Jackson and M. P. Hooker, Auger/LEED investigation of the deposition of A1 onto the Mo (110) surface, Surface Sci. 28, 373–394 (1971).Google Scholar
  376. 376.
    O. Nishikawa and T. Utsumi, Field ion microscope study on the interaction of gallium with metals. I. Pseudomorphic structure and superstructures on tungsten, J. Appl. Phys. 44, 945–954 (1973).Google Scholar
  377. 377.
    A. G. Jackson and M. P. Hooker, Auger/LEED investigations of Sn on Mo (100), Surface Sci. 27, 197–210 (1971).Google Scholar
  378. 378.
    G. Ehrlich and C. F. Kirk, Binding and field desorption of individual tungsten atoms, J. Chem. Phys. 48, 1465–1480 (1968).Google Scholar
  379. 379.
    T. T. Tsong and R. J. Walko, Measurements of the polarizability of tungsten adatoms on tungsten (110) planes, Phys. Stat. Sol. (a) 12, 111–117 (1972).Google Scholar
  380. 380.
    D. W. Bassett, Field ion microscope studies of iridium adatom clusters on (110) tungsten surfaces, Surface Sci. 21, 181–185 (1970).Google Scholar
  381. 381.
    D. W. Bassett, Private communication (1973).Google Scholar
  382. 382.
    J. H. Pollard and W. E. Danforth, in The Structure and Chemistry of Solid Surfaces (G. A. Somorjai, ed.), pp. 71.1–71. 15, Wiley, New York (1969).Google Scholar
  383. 383.
    J. H. Pollard and W. E. Danforth, LEED Observations of epitaxially grown thorium on (100) tantalum, J. Appl. Phys. 39, 4019–4020 (1968).Google Scholar
  384. 384.
    R. A. Collins and B. H. Blott, Multilayer adsorption of uranium on tungsten, Surface Sci. 13, 401–413 (1969).Google Scholar
  385. 385.
    D. S. Whitmell, A field-ion microscope study of thin films of iridium on molybdenum, Surface Sci. 11, 37–51 (1968).Google Scholar
  386. 386.
    G. A. Gorodetskii, A. A. Yas’ko, and S. A. Shevlyadov, Structure of lanthanum films on the (110) and (100) faces of tungsten, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 536–542 (1971).Google Scholar
  387. 387.
    B. M. Palyukh and T. P. Smereka, Study of cerium adsorption on a tungsten single crystal in a field-emission microscope, Soviet Phys.—Solid State 13, 640–643 (1971).Google Scholar
  388. 388.
    O. L. Golubev, G. A. Odishariya, and V. N. Shrednik, Arrhenius curves for two-dimensional condensation-sublimation of Zr on Nb and of Hf on Mo, Izv. Akad. Nauk, SSSR, Ser. Fiz. 35, 316–320 (1971).Google Scholar
  389. 389.
    P. W. Palmberg and W. T. Peria, Low energy electron diffraction studies on Ge and Na-covered Ge, Surface Sei. 6, 57–97 (1967).Google Scholar
  390. 390.
    J. M. Chen and C. C. Chang, Laser desorption of submonolayers of Na and Cs from Ge substrates, J. Appl. Phys. 43, 3884–3886 (1972).Google Scholar
  391. 391.
    K. Spiegel, Untersuchungen zum Schichtwachstum von Silver auf der Silizium (lll)-Oberfläche durch Beugung langsamer Elektronen, Surface Sei. 7, 125–142 (1967).Google Scholar
  392. 392.
    H. E. Bishop and J. C. Riviere, Segregation of gold to the silicon (111) surface observed by Auger emission spectroscopy and by LEED, Brit. J. Appl. Phys. (J. Phys. D) [2] 2, 1635–1642 (1969).Google Scholar
  393. 393.
    W. Haidinger and S. C. Barnes, LEED investigations of clean and Au-stabilized Si surfaces, Surface Sei. 20, 313–325 (1970).Google Scholar
  394. 394.
    T. Narusawa and S. Kowiya, Diffuse interface in Si (substrate)-Au (evaporated film) systems, Appl. Phys. Letters 22, 389–390 (1973).Google Scholar
  395. 395.
    F. A. Otter, Jr., H. C. Abbink, and O. L. de Lange, Possibility of a surface-stabilized compound of Au and Si on Si surfaces, Surface Sei. 27, 273–278 (1971).Google Scholar
  396. 396.
    R. Wübbenhorst, K. Hartig, and R. Neidermayer, Anisotropic film growth and pseudomorphism of silver on a germanium (110) surface, J. Vac. Sei. Technol. 6, 865–870 (1969).Google Scholar
  397. 397.
    J. J. Lander and J. Morrison, Surface reactions of silicon with aluminum and with indium, Surface Sei. 2, 553–565 (1964).Google Scholar
  398. 398.
    J. J. Lander and J. Morrison, Surface reactions of silicon (111) with aluminum and indium, J. Appl. Phys. 36, 1706–1713 (1965).Google Scholar
  399. 399.
    P. J. Estrup and J. Morrison, Studies of monolayers of lead and tin on Si (111) surfaces, Surface Sei. 2, 465–472 (1964).Google Scholar
  400. 400.
    L. Wray and M. Prutton, The structure of nickel and cobalt films on the (111) surface of n-type silicon, Thin Solid Films 15, 173–180 (1973).Google Scholar
  401. 401.
    A. J. van Bommel and F. Meyer, Reply to the comment of H. K. Lintz concerning “LEED study of a nickel induced surface structure on silicon (111),” Surface Sei. 12, 391–392 (1968).Google Scholar
  402. 402.
    J. M. Charig and D. K. Skinner, Auger electron spectroscopy of nickel deposits on the silicon (111) surface, Surface Sei. 19, 283–290 (1970).Google Scholar
  403. 403.
    J. W. T. Ridgway and D. Haneman, Auger spectra and LEED patterns from vacuum cleaved silicon crystals with calibrated deposits of iron, Surface Sei. 24, 451–458 (1971).Google Scholar
  404. 404.
    G. A. Walker, R. C. Wnuk, and J. E. Woods, Structure of evaporated PtSi on Si, J. Vac. Sei. Technol. 7, 543–546 (1970).Google Scholar
  405. 405.
    J. J. Lander and J. Morrison, A LEED investigation of physisorption, Surface Sei. 6, 1–32 (1967).Google Scholar
  406. 406.
    P. W. Palmberg, Physical adsorption of xenon on Pd (100), Surface Sei. 25, 598–608 (1971).Google Scholar
  407. 407.
    A. Ignatiev, A. V. Jones, and T. N. Rhodin, LEED investigations of xenon single crystal films and their use in studying the Ir (100) surface, Surface Sei. 30, 573–591 (1972).Google Scholar
  408. 408.
    M. A. Chesters, M. Hussain, and J. Pritchard, Xenon monolayer structures on copper and silver, Surface Sei. 35, 161–171 (1973).Google Scholar
  409. 409.
    B. G. Baker and B. B. Johnson, Surface potentials of xenon adsorbed on nickel, J. Vac. Sei. Technol. 9, 930–933 (1972).Google Scholar
  410. 410.
    T. Engel and R. Gomer, Adsorption of inert gases on tungsten: measurements on single crystal planes, J. Chem. Phys. 52, 5572–5580 (1970).Google Scholar
  411. 410.
    T. Engel and R. Gomer, Adsorption of inert gases on tungsten: measurements on single crystal planes, J. Chem. Phys. 52, 5572–5580 (1970).Google Scholar
  412. 412.
    H. Dabringhaus and H. J. Meyer, Untersuchung der Kondensation und Verdampfung von Alkalihalogenid-Kristallen mit Molekularstrahlmethoden. II. Relaxationseffekte auf der (100)—Oberfläche von KCl, J. Crystal Growth 16, 31–35 (1972).Google Scholar
  413. 413.
    R. J. Bacigalupi and H. E. Neustadter, Dependence of adsorption properties on surface structure for face-centered-cubic substrates, Surface Sei. 19, 396–402 (1970).Google Scholar
  414. 414.
    D. W. Bassett, in Surface and Defect Properties of solids, Vol. 2 (M. W. Roberts and J. M. Thomas, eds.), pp. 34–68, The Chemical Society, London, 1973.Google Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • R. J. H. Voorhoeve
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations