The Kinetics of Crystal Growth and Renal Stone-Formation

  • George H. Nancollas

Abstract

The formation of stones in the urinary tract is one of the oldest diseases suffered by humans, and despite extensive studies, there is still much to be learned as to why concretions develop in some patients but not in others. Calcium — containing salts probably constitute one of the most important components of urinary stones, and studies of the physical chemistry of formation of such crystals may help elucidate the important factors involved in the in vivo formation of these salts. Under physiological conditions, the most stable calcium phosphate phase is hydroxyapatite [HAP, Ca5(PO4)3OH] but in tooth, bone and renal deposits, although exhibiting an apatitic x-ray pattern, the ratio of total calcium, TCa, to total phosphate, Tp concentrations, TCa/Tp is often appreciably lower than the 1.67 required for HAP. Typical variations in TCa, Tp, total oxalate, Tox, ionic strength, I(millimolar units) and pH for serum and urine are shown in Table 1.

Keywords

Crystallization Dust Heparin Barium Dehydration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Elliot, Invest. Urol., 1, 582 (1964).PubMedGoogle Scholar
  2. 2.
    W.G. Robertson, Clinica Chim. Acta, 24, 149 (1969).CrossRefGoogle Scholar
  3. 3.
    A. White, P. Handler and E.L. Smith, Principles of Biochemistry, (McGraw Hill Co., N.Y. 5th. Edn 1973).Google Scholar
  4. 4.
    J.S. Elliot Urinary Calculi, Int. Symp. Renal Stone Res., Madrid, 1972 (Kager, Basel, 1973).Google Scholar
  5. 5.
    G.H. Nancollas, Interactions in Electrolyte Solutions, Elsevier, Amsterdam, 1966.Google Scholar
  6. 6.
    G.H. Nancollas, Coord. Chem. Rev., 5, 379 (1970).CrossRefGoogle Scholar
  7. 7.
    G.H. Nancollas, “The Structure of Multicomponent Electrolyte Solutions”, Proc.Conf.Urolithiasis: Phys.Aspects, Nat.Acad.Sci., 1972, 65.Google Scholar
  8. 8.
    W.G. Robertson, M. Peacock and B.E.C. Nordin, “Measurement of Activity Products in Urine from Stone-Forming and Normal Subjects” in ref. 7 p. 79.Google Scholar
  9. 9.
    M. Volmer, “Kinetik der Phasenbildung”, Edwards Bros., Ann Arbor, Michigan, 1945.Google Scholar
  10. 10.
    J.A.C. Christiansen and A.E. Nielsen, Acta Chem.Scand., 5, 673 (1951).CrossRefGoogle Scholar
  11. 11.
    A.E. Nielsen, Acta Chem. Scand., 14, 1654 (1960).CrossRefGoogle Scholar
  12. 12.
    A.G. Walton, Anal. Chim. Acta, 29 434 (1963).CrossRefGoogle Scholar
  13. 13.
    K.H. Lieser, Z. Physik. Chem. NF, 62, 168 (1968).CrossRefGoogle Scholar
  14. 14.
    W.F. Neuman and M.W. Neuman, Chem. Rev., 53, 1 (1953).CrossRefGoogle Scholar
  15. 15.
    E.D. Eanes, I.H. Gillessen and A.S. Posner, Nature (Lond)., 298, 365 (1968).Google Scholar
  16. 16.
    G.H. Nancollas and B. Tomazic, J. Phys. Chem., 73, 3838 (1974).Google Scholar
  17. 17.
    B. Tomazic and G.H. Nancollas, J. Coll. Interface Sci., 50, 451 (1975).CrossRefGoogle Scholar
  18. 18.
    W. Kossel, Ann. Phys., 21 455 (1934).Google Scholar
  19. 19.
    I.N. Stranski, Z. Phys. Chem. Abt. A.136, 259 (1928).Google Scholar
  20. 20.
    R. Becker and W. Doring, Ann.Phys. (Leipzig) 24, 719 (1935).Google Scholar
  21. 21.
    R. Becker, Discussions Faraday Soc., 5, 56 (1949).CrossRefGoogle Scholar
  22. 22.
    F.C. Frank, Discussions Faraday Soc., 5, 67 (1949).Google Scholar
  23. 23.
    W.K. Burton, N. Cabrera and F.C. Frank, Phil.Trans.Roy.Soc., London A.243, 299 (1951).Google Scholar
  24. 24.
    A.A. Chernov, Soviet Phys. Usp., 116 (1961).Google Scholar
  25. 25.
    R. Reich and M. Kahlweit, Ber. Bunsenges, Phys. Chem., 72, 66 (1968).Google Scholar
  26. 26.
    G.H. Nancollas and J.S. Wefel, J. Crystal Growth, 23, 169 (1974).CrossRefGoogle Scholar
  27. 27.
    C.W. Davies and A.L. Jones, Discussions Faraday Soc., 5, 103 (1949).CrossRefGoogle Scholar
  28. 28.
    M.D. Francis, Ann. N.Y. Acad. Sci., 131, 694 (1965).PubMedCrossRefGoogle Scholar
  29. 29.
    E.D. Eanes, I.H. Gillessen and A.S. Posner, Proc. Int.Conf. on Crystal Growth, Boston (1966), Pergamon Press, Oxford 1967, 373.Google Scholar
  30. 30.
    W.E. Brown, Clin. Orthop., 44, 205 (1966).PubMedGoogle Scholar
  31. 31.
    J.L. Meyer and G.H. Nancollas, J. Dent. Res., 51, 1433 (1972).Google Scholar
  32. 32.
    J.L. Meyer and G.H. Nancollas, Arch. Oral Biol., 17, 1623 (1972).PubMedCrossRefGoogle Scholar
  33. 33.
    W.H. Boyce, W.M. McKinney, T.T. Long and G.W. Drack, J. Urol., 97, 783 (1967).PubMedGoogle Scholar
  34. 34.
    J.E. Crawford, E.P. Crematy and A.E. Alexander, Aust. J. Chem., 21, 1067 (1968).CrossRefGoogle Scholar
  35. 35.
    J.S. Desmars and R. Tawashi, Biochim. Biophys. Acta, 313, 256 (1973).PubMedCrossRefGoogle Scholar
  36. 36.
    H. Fleisch and S. Bisaz, Experientia 20, 276 (1964).PubMedCrossRefGoogle Scholar
  37. 37.
    H. Fleisch, S. Bisaz and R.G.G. Russell, Urol. Int., 22, 483 (1967).PubMedCrossRefGoogle Scholar
  38. 38.
    A. Jung, S. Bisaz, P. Bartholdi and H. Fleisch, Calc. Tiss. Res., 13, 27 (1973).CrossRefGoogle Scholar
  39. 39.
    D. Fraser, R.G.G. Russell, O. Pohler, W.G. Robertson and H. Fleisch, Clin. Sci., 42, 197 (1972).PubMedGoogle Scholar
  40. 40.
    R. W. Marshall and G.H. Nancollas, J. Phys. Chem., 73, 3838 (1970).CrossRefGoogle Scholar
  41. 41.
    G.H. Nancollas and G.L. Gardner, J. Crystal Growth, 21, 267 (1974).CrossRefGoogle Scholar
  42. 42.
    J.L. Meyer and G.H. Nancollas, Calc. Tiss. Res., 13, 295 (1973)CrossRefGoogle Scholar
  43. 43.
    S.T. Liu and G.H. Nancollas, J.Coll. Interface Sci., 52, 593 (1975).CrossRefGoogle Scholar
  44. 44.
    K. Lonsdale, Nature, 217, 56 (1968).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Barone, G.H. Nancollas and M. Tomson, Calcif. Tiss. Res., in press.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • George H. Nancollas
    • 1
  1. 1.Department of ChemistryState University of New York at BuffaloBuffaloUSA

Personalised recommendations