Advertisement

Metabolic Protection During Ischemic Cardiac Arrest

  • M. V. Braimbridge
  • D. J. Hearse
  • D. A. Stewart

Abstract

Open heart surgery requires ideally a still and relaxed heart. Cardiac arrest in diastole can be induced by several procedures (1–10) which may or may not involve coronary perfusion. Clearly coronary perfusion throughout the period of arrest is ideal but the simplicity and practical advantages of ischemic arrest have resulted in its widespread use (7,8). However, the use of ischemic arrest has been criticised (1,11,12,13) because, associated with its prolonged use is the onset of irreversible metabolic and ultrastructural damage. The important question therefore arises:- is there any way in which the ischemic period can be extended or the onset of irreversible damage be reduced or delayed?

Keywords

Cardiac Arrest Creatine Phosphate Adenosine Triphosphate Aortic Flow Perfusion Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hearse, D.J., Stewart, D.A., Chain, E.B.: Recovery from cardiac bypass and elective cardiac arrest: Metabolic consequences of various cardioplegic procedures in the isolated rat heart. Circ. Res. 35: 448–457,1974.PubMedGoogle Scholar
  2. 2.
    Hearse, D.J., Stewart, D.A., Braimbridge, M.B.: Hypothermic arrest and potassium arrest: Metabolic and myocardial protection during elective cardiac arrest. Circ. Res. 36: 481–489,1975.PubMedGoogle Scholar
  3. 3.
    Melrose, D.G., Dreyer, B., Bentall, H.H., Baker, J.B.E.: Elective cardiac arrest. Lancet 2: 21–22,1955.CrossRefGoogle Scholar
  4. 4.
    Bernhard, W.F., Schwartz, H.F., Mallick, N.P.: Elective hypothermic cardiac arrest in normothermic animals. Ann. Surg. 153: 43–51,1961.PubMedGoogle Scholar
  5. 5.
    Sealy, W.C., Young, W.G., Brown, I.W., Harris, J.S., Merritt, D.H.: Potassium, magnesium and neostigmine for controlled cardioplegia. J. Thorac. Cardiovasc. Surg. 37:655–659, 1959.Google Scholar
  6. 6.
    Hurley, E.J., Lower, R.R., Dong, E., Pillsbury, R.C., Shumway, N.E.: Clinical experience with local hypothermia in elective cardiac arrest. J. Thorac. Cardiovasc. Surg. 47: 50–65,1964.PubMedGoogle Scholar
  7. 7.
    Bloodwell, R.D., Kidd, J.N., Hallman, G.L., Burdette, W.J., McMurtrey, M.J., Cooley, D.A.: Cardiac valve replacement without coronary perfusion: Clinical and laboratory observations. In Prosthetic Heart Valves edited by L.A. Brewer. Springfield, Illinois, Charles C. Thomas, pp 397–410, 1969.Google Scholar
  8. 8.
    Cooley, D.A, Reul, G.J., Wukasch, D.C.: Ischemic contracture of the heart: "Stone Heart" Am. J. Cardiol. 29:575–577,1972.PubMedCrossRefGoogle Scholar
  9. 9.
    Greenberg, J.J., Edmunds, L.H., Brown, R.B.: Myocardial metabolism and post-arrest function in the cold and chemically arrested heart. Surgery 48:31–42,1960.PubMedGoogle Scholar
  10. 10.
    Tyres, G.F.O., Todd, G.J., Neeley, J.R., Waldhausen, J.A.: The mechanism of myocardial protection from ischemic arrest by intracoronary tetrodotoxin administration. J. Thorac. Cardiovasc. Surg. 69:190–195,1975.Google Scholar
  11. 11.
    Iyengar, S.R.K., Ramchand, S., Charrette, E.J.P., Iyengar, C.K.S., Lynn, R.B.: Anoxic cardiac arrest: Experimental and clinical study of its effects. J. Thorac. Cardiovasc. Surg. 66:722–730,1973Google Scholar
  12. 12.
    Braimbridge, M.V., Darracott, S., Clement, A.J., Bitensky, L., Chayen, J.: Myocardial deterioration during aortic valve replacement assessed by cellular biological tests. J.Thorac. Cardiovasc. Surg. 66:241-246,1973.Google Scholar
  13. 13.
    Reis, R.L., Staroscik, R.N., Rodgers, B.M., Enright, L.P., Morrow, A.G.: Left ventricular function after ischemic cardioplegia. Arch.Surg. 99:815-820,1969.Google Scholar
  14. 14.
    Jennings, R.B., Sommers, H.M., Hudson, P.B., Kretenbach, J.P.: Ischemic injury of myocardium. Ann. N.Y. Acad. Sci. 156: 61–78, 1969.PubMedCrossRefGoogle Scholar
  15. 15.
    Gott, V.L., Bartlett, M., Johnson, J.A., Long, D.M., Lillehei, C.W.: High energy phosphate levels in the human heart during potassium citrate arrest and selective hypothermic arrest. Surg. Forum 10; 544–547, 1960.PubMedGoogle Scholar
  16. 16.
    Griepp, R.B., Stinson, E.B., Shumway, N.E.: Profound local hypothermia for myocardial protection during open heart surgery. J. Thorac. Cardiovasc. Surg. 66:731–739,1973.PubMedGoogle Scholar
  17. 17.
    Proctor, E.: Early sinus rhythm in dog hearts preserved for 96 hours and assessed ex vivo. Transplantation 13: 437–438, 1972.PubMedCrossRefGoogle Scholar
  18. 18.
    Levy, M.N.: Oxygen consumption and blood flow in the hypothermic, perfused kidney. Am. J. Physiol. 197:1111–1114, 1959.PubMedGoogle Scholar
  19. 19.
    Bretschneider, H.J.: Uberlebenszeit und Wiederbelebungszeit des Herzens bei Normo-und Hypothermie. Verh Dtsch Ges Kreislaufforsch 30: 11–34, 1964.PubMedGoogle Scholar
  20. 20.
    Kirsch, U., Rodewald, G., Kalmar, P.: Induced ischemic arrest. J. Thorac. Cardiovasc. Surg 63: 121–130, 1972.PubMedGoogle Scholar
  21. 21.
    Kirsch, U.: Untersuchungen zum Eintritt der Totenstarre an ischaemischen Meerschweinchenherzen in Normothermie. Der Winfluss von Procaine, Kalium un Magnesium, Arzneimo Forsch 20; 1071–1074, 1970.Google Scholar
  22. 22.
    Neely, J.R., Liebermeister, H., Battersby, E.J., Morgan, H.E.: Effect of pressure development on oxygen consumption by isolated rat heart. Am. J. Physiol. 212: 804-814, 1967.Google Scholar
  23. 23.
    Langendorff, O.: Untersuchungen am überlebenden Säugethierherzen. Pf1uegers Arch. 61: 291–332, 1958.CrossRefGoogle Scholar
  24. 24.
    Krebs, H.A., Henseleit, K.: Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe Sey1ers Z. Physio1. Cherm. 210: 33–66, 1932.CrossRefGoogle Scholar
  25. 25.
    Weissler, A.M., Kruger, G.A., Baba, N., Scarpelli, D.G., Leighton, R.D., Gallimore, J.K.: The role of anaerobic metabolism in the preservation of functional capacity and structure of anoxic myocardium. J. Clin. Invest. 47:403–416, 1968.PubMedCrossRefGoogle Scholar
  26. 26.
    Opie, L.H.: The glucose hypothesis: relation to acute myocardial ischemia. J. Molec. Cell. Cardiol. 1: 107–115, 1970.CrossRefGoogle Scholar
  27. 27.
    Brachfeld, W.: Ischemic myocardial metabolism and cell necrosis Bull N.Y. Acad. Med. 50: 261–293, 1974.Google Scholar
  28. 28.
    Hearse, D.J., Chain, E.B.: The role of glucose in the survival and recovery of the anoxic isolated perfused rat heart. Biochem. J. 128:1125–1133, 1972.PubMedGoogle Scholar
  29. 29.
    Hearse, D.J., Humphrey, S.M.: Enzyme release during myocardial anoxia: a study of metabolic protection. J. Molec. Cell Cardiol. 7: 463–482, 1975.CrossRefGoogle Scholar
  30. 30.
    Wilkinson, J.H., Robinson, J.M.: Effects of energy rich compounds on release of intracellular enzymes from human leukocytes and rat lymphocytes. Clin. Chem. 20: 1331–1336, 1974.PubMedGoogle Scholar
  31. 31.
    Parratt, J.R., Marshall, R.J.: The response of isolated cardiac muscle to acute anoxia: protective effect of adenosine triphosphate and creatine phosphate. J. Pharm. Pharmac. 26: 427–433, 1974.CrossRefGoogle Scholar
  32. 32.
    Fedelesova, M., Ziegelhoffer, A., Krause, E.G., Wollenberger, A.: Effect of exogenous adenosine triphosphate upon the metabolic state of the excised hypothermic dog heart. Cir. Res. XXIV: 617–727, 1969.Google Scholar
  33. 33.
    Chaudry, I.H., Gould, M.K.: Evidence for the uptake of ATP by rat soleus muscle in vitro. Biochem. Biophys. Acta 196: 320–326, 1970.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • M. V. Braimbridge
    • 1
  • D. J. Hearse
    • 1
  • D. A. Stewart
    • 1
  1. 1.The Myocardial Metabolism Laboratories, The Rayne InstituteSt. Thomas HospitalLondon

Personalised recommendations