Skip to main content

Spin-Phonon Interactions

  • Chapter
Phonon Scattering in Solids

Abstract

The scattering of light by an atomic system was considered in the early days of quantum theory and is described by the KramersHeisenberg scattering formula1. This may be derived by straightforward perturbation theory2 though certain refinements are necessary to include level shifts3. For a two-level atom the scattering is elastic. The atom, initially in the ground state absorbs a photon k, makes a virtual transition to an excited state, then emits a photon k’ returning to its initial state. Energy conservation requires equality of the frequencies ωk = ωk’. The frequency dependence of the scattering cross-section σk divides into three regions. For low frequencies ωk ≪ ωo, where hωo is the separation of the atomic levels, we have Rayleigh scattering and σk ∿ ω 4k . For high frequencies ωk ≫ ωo, the electrons in the atom behave as if essentially free and we have frequency-independent Thomson scattering. For ωk ∿ ωo the cross-section exhibits a sharp peak which is the region of resonance fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kramers H A and Heisenberg W, 1925, Zeit fur Phys 31, 681.

    Article  ADS  Google Scholar 

  2. Louisell W H, 1973, Quantum Statistical Properties of Radiation (Wiley: New York), Section 5. 4.

    Google Scholar 

  3. Heitler W, 1954, Quantum Theory of Radiation (Clarendon Press: Oxford), Section 20.

    MATH  Google Scholar 

  4. Griffin A and Carruthers P, 1963, Phys Rev 131, 1976.

    Article  ADS  MATH  Google Scholar 

  5. Seiden J, 1963, Comptes Rendus Acad Sciences 256, 393.

    MathSciNet  MATH  Google Scholar 

  6. Orbach R, 1962, Phys Rev Lett 8, 393.

    Article  ADS  Google Scholar 

  7. Klein M V, 1969, Phys Rev 136, 839.

    Article  ADS  Google Scholar 

  8. Sheard F W and Toombs G A, 1973, Solid St Commun 12, 713.

    Article  ADS  Google Scholar 

  9. Walton D, 1973, Phys Rev B7, 3925.

    ADS  Google Scholar 

  10. Iolin E M, 1965, Proc Phys Soc 85, 759.

    Article  ADS  Google Scholar 

  11. Mills D L, 1965, Phys Rev 139, A1640.

    Article  ADS  Google Scholar 

  12. Elliott R J and Parkinson J B, 1967, Proc Phys Soc 92, 1024.

    Article  ADS  Google Scholar 

  13. Stevens K W H and Van Eekelen H A M, 1967, Proc Phys Soc 92, 630.

    Article  ADS  Google Scholar 

  14. Roundy V and Mills D L, 1970, Phys Rev B1, 3703.

    ADS  Google Scholar 

  15. Fidler F B and Tucker J W, 1970, Solid St Commun 8, 2055.

    Article  ADS  Google Scholar 

  16. Toombs G A and Sheard F W, 1973, J Phys C 6, 1467.

    Article  ADS  Google Scholar 

  17. Joshi S K, 1975, Solid St Commun 16, 83.

    Article  ADS  Google Scholar 

  18. Gehring G A and Gehring K A, 1975, Rep Prog Phys 38, 1.

    Article  ADS  Google Scholar 

  19. Fletcher J R, Bluman J and Sheard F W, 1972, Int Conf Phonon Scattering (CEN Saclay: Paris), 228.

    Google Scholar 

  20. Halperin B and Englman R, preprint and Proceedings of this Conference.

    Google Scholar 

  21. Jacobsen E H and Stevens K W H, 1963, Phys Rev 131, 1976.

    Article  Google Scholar 

  22. Huber D L and Van Vleck J H, 1966, Rev Mod Phys 38, 187.

    Article  ADS  Google Scholar 

  23. Tucker J W, 1972, J Phys C 5, 2064.

    Article  ADS  Google Scholar 

  24. Dreyfus B, 1972, Int Conf Phonon Scattering (CEN Saclay: Paris) 207.

    Google Scholar 

  25. Klein M V, 1973, Phys Rev B8, 919.

    ADS  Google Scholar 

  26. Shen Y R, 1974, Phys Rev B9, 622.

    ADS  Google Scholar 

  27. Sheard F W and Toombs G A, 1971, J Phys C 4, 313.

    Article  ADS  Google Scholar 

  28. Challis L J, de Goer A M, Guckelsberger K and Slack G A, 1972, Proc Roy Soc A330, 29.

    ADS  Google Scholar 

  29. de Goer A M and Devismes N, 1972, J Phys Chem Solids 33, 1785.

    Article  ADS  Google Scholar 

  30. Morton I P and Lewis M F, 1971, Phys Rev B3, 552.

    ADS  Google Scholar 

  31. Locatelli M and de Goer A M, 1974, Solid St Commun 14, 111.

    Article  ADS  Google Scholar 

  32. McClintock P V E and Rosenberg H M, 1968, Proc Roy Soc A302, 419.

    ADS  Google Scholar 

  33. Brock J C F and Huntley D J, 1968, Canad J Phys 46, 2231.

    Article  ADS  Google Scholar 

  34. Walton D, 1970, Phys Rev B1, 1234.

    ADS  Google Scholar 

  35. Swain S, 1967, Ph.D. thesis, University of Nottingham.

    Google Scholar 

  36. Walton D, Mook H A and Nicklow R M, 1974, Phys Rev Lett 33, 412.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Sheard, F.W. (1976). Spin-Phonon Interactions. In: Challis, L.J., Rampton, V.W., Wyatt, A.F.G. (eds) Phonon Scattering in Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4271-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4271-7_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4273-1

  • Online ISBN: 978-1-4613-4271-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics