Advertisement

Low Energy Phonons in Amorphous Materials

  • Roger Maynard

Abstract

The Resonant interaction: All the properties(1) observed so far on glasses and polymers are conceptually strongly akin to the problem of the interaction between the electronic spins of paramagnetic impurities and phonons. More precisely the understanding of the low temperature properties requires the study of the propagation of phonons in a resonant medium characterized by a broad distribution of the energy splittings of the resonant spins. Therefore, the natural starting point is the theory of Jacobsen and Stevens(2) for the coupling of phonons and spins. Here, the spins are the configurational defects pictured by a double well potential proposed first by Anderson, Halperin, Varma(3) and Phillips(4). Retaining only the double degrees of}freedom, these defects can be represen-ted by a fictive 1/2 spin \(\mathop {S\alpha }\limits^ \to\) located at site \(\mathop {Ra}\limits^ \to\), with an energy splitting Eα. The coupled Hamiltonian
$${H_o} = \sum\limits_k {\forall {\omega _k}} a_k^ + {a_k} + \sum\limits_\alpha {E\alpha S\mathop \alpha \limits^z }$$
(1)
where ω=vk is the frequency of a phonon k of a unique acoustic branch we consider for simplicity. The interaction Hamiltonian is a quadratic form of the spin and phonon variables:
$$Hint = \sum\limits_\alpha {B_x^\alpha } \eta \left( {\mathop {R\alpha }\limits^ \to } \right)S_\alpha ^x\eta \left( {\mathop r\limits^ \to } \right) = \frac{1}{{\sqrt v }}\sum\limits_k {{{\mathop {2\rho v}\limits^{\left( {\frac{{\forall \omega k}}{2}} \right)} }^{1/2}}} \left( {{a_k} + a_{ - k}^ + } \right){e^{i{{\vec k}_{\vec \Gamma }}}}$$
(2)
ρ the mass density, \(\eta \left( {\vec r} \right)\) is the local strain operator (only the isotropic local dilatation is considered for simplicity) and S α x is the x-component of the Pauli matrix describing the spin flip process.

Keywords

Sound Velocity Energy Splitting Resonant Medium Natural Starting Point Local Dilatation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    See for example the article from J.C. Lasjaunias, Ravex and M. Vandorpe this issue.Google Scholar
  2. (2).
    E.H. JACOBSEN and K.W.H. STEVENS, Phys. Rev. 129, 2036 (1963).ADSCrossRefGoogle Scholar
  3. (3).
    P.W. ANDERSON, B.I. HALPERIN and C.M. VARMA, Phil. Mag. 25 (1972).Google Scholar
  4. (4).
    W.A. PHILIPS, J. Low Temp. Phys. 7, 351 (1972).ADSCrossRefGoogle Scholar
  5. (5).
    G.A. TOOMBS and F.W. SHEARD, J. Phys. C 6, 1467 (1973).ADSCrossRefGoogle Scholar
  6. (6).
    L. PICHE, R. MAYNARD, S. HUNKLINGER, and J. JRCKLE, Phys. Rev. Letters 32, 1426 ( 1974 ). L. PICHE and S. HUNKLINGER (1975), this issue.Google Scholar
  7. (7).
    K. Matho and R. Maynard, to be published.Google Scholar
  8. (8).
    S. HUNKLINGER, W. ARNOLD, S. STEIN, R. NAVA and K. DRANSFELD Phys. Letters 42A, 253 (1972). B. Golding, J.E. Graebner, and B.I. Halperin, Phys. Rev. Letters 30, 223 (1973). W. ARNOLD, S. HUNKLINGER, S. STEIN and K. DRANSFELD, J. NON-CRYST. Solids 14, 192 (1974).Google Scholar
  9. (9).
    M. VON SCHICKFUS, S. HUNKLINGER, and L. PICHE, to be published.Google Scholar
  10. (10).
    L. LANDAU and E. LIFCHITZ, Mécanique des Fluides (19I1),p.385.Google Scholar
  11. (11).
    J. JACKLE, Z. PHYSIK 257, 212 (1972). J. JACKLE, L. PICHE, W. ARNOLD and S. HUNKLINGER (1975) to be published.Google Scholar
  12. (12).
    J. JOFFRIN and A. LEVELUT, J. de Physique 36 (1975).Google Scholar
  13. (13).
    W. ARNOLD and S. HUNKLINGER, to be published.Google Scholar
  14. (14).
    G. FROSSATI, private communication.Google Scholar
  15. (15).
    G.J. MORGAN, J. Phys. C 2, 347 (1968). G. J. MORGAN and D. SMITH J. Phys. C 7, 649 (1974).Google Scholar
  16. (16).
    A.J. LEADBETTER, A.J. JEAPES, Waterfield, unpublished work, R.B. STEPHENS, Phys. Rev. B15 (1973).Google Scholar
  17. (17).
    M.P. ZAITLIN and A.C. ANDERSON, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Roger Maynard
    • 1
  1. 1.Centre de Recherches sur les Très Basses TempératuresCNRSGrenoble-CédexFrance

Personalised recommendations