Electrocrystallization and the Electrolytic Deposition Mechanism for Silver

  • E. Budevskii
  • V. Bostanov
  • T. Vitanov

Abstract

When a crystal has become covered with faces and has taken up a transitional or steady-state growth form, the subsequent growth rate is determined by the normal growth rate of the existing faces; if there are no other additional conditions that complicate the growth such as diffusion or adsorption, these faces will be the most close-packed, i.e., they belong to the equilibrium form. The theory envisages two basic growth mechanisms for such faces, one of which is the two-dimensional mechanism, in which the growth occurs by layerwise fluctuation production of each fresh layer. The second is the spiral growth mechanism, which occurs when there are screw dislocations, and this is the main mechanism found in nature.

Keywords

Crystallization Anisotropy Pyramid Supersaturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. Kaishev. Ezh. Sol. Univ., Fiz.-Mat. Fak., 42 (2):109 (1946).Google Scholar
  2. 2.
    E. Budevskii, V. Bostanov, T. Vitanov, Z. Stoinov, A. Kotseva, and R. Kaishev. Elektrokhimiya, 3:856 (1967).Google Scholar
  3. 3.
    M. Volmer. Kinetik der Phasenbildung, Steinkopf-Verlag, Dresden (1939).Google Scholar
  4. 4.
    R. Becker and W. Döring. Ann. Phys., 24:719 (1935).MATHCrossRefGoogle Scholar
  5. 5.
    R. Kaishev and I. Stranski. Z. Phys. Chem., 26B:317 (1934).Google Scholar
  6. 6.
    St. Stoyanov. Izv. Otd. Khim. Nauk Bolg. AN, 3:491 (1970).Google Scholar
  7. 7.
    E. Budevskii and W. Bostanov. Electrochim. Acta, 9:477 (1964).CrossRefGoogle Scholar
  8. 8.
    V. Bostanov, A. Kotseva, and E. Budevskii. Izv. Inst. Fiz. Khim. Bolg. AN, 6:33 (1967).Google Scholar
  9. 9.
    E. Budevskii, T. Vitanov, and W. Bostanov. Phys. Status Solidi, 8:369 (1965).CrossRefGoogle Scholar
  10. 10.
    E. Budevskii, W. Bostanov, T. Vitanov, Z. Stoinov, A. Kotseva, and R. Kaishev. Electrochim. Acta, 11:1697 (1966).CrossRefGoogle Scholar
  11. 11.
    E. Budevskii, W. Bostanov, T. Vitanov, Z. Stoinov, A. Kotseva, and R. Kaishev. Phys. Status Solidi, 13:577 (1966).CrossRefGoogle Scholar
  12. 12.
    V. Bostanov and R. Rusinova. Private communication.Google Scholar
  13. 13.
    V. Bostanov, R. Rusinova, and E. Budevskii. Proceedings of the Fourth All-Union Conference on Crystal Growth [in Russian] (1972), p. 215.Google Scholar
  14. 14.
    V. Bostanov, R. Rusinova, and E. Budevskii. Chemie-Ingr.-Techn., Berlin, 93 (1971).Google Scholar
  15. 15.
    V. Bostanov, R. Rusinova, and E. Budevskii. J. Electrochem. Soc., 119:1346 (1972).CrossRefGoogle Scholar
  16. 16.
    W. B. Hillig. Acta Metallurgies 14:1868 (1966).CrossRefGoogle Scholar
  17. 17.
    L. Borovinskii and A. Tsindergozen. Dokl. AN SSSR, 183:1308 (1968).Google Scholar
  18. 18.
    U. Bertocci. Surface Sci., 15:286 (1969).ADSCrossRefGoogle Scholar
  19. 19.
    R. Armstrong and J. Harrison. J. Electrochem. Soc., 116:328 (1969).CrossRefGoogle Scholar
  20. 20.
    W. K. Burton, N. Cabrera, and F. C. Frank. Philos. Trans. Roy. Soc. London, A243:299 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    R. Kaishev, E. Budevskii, and J. Malinovski. Z. Phys. Chem., 204:348 (1955).Google Scholar
  22. 22.
    V. Bostanov, Chr. Nanev, R. Kaishev, and E. Budevskii. Kristall und Technik, 2:319 (1967).CrossRefGoogle Scholar
  23. 23.
    R. Kaishev and E. Budevskii. Contemporary Phys., 8:489 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    E. Budevskii, V. Bostanov, T. Vitanov, Kh. Nanev, Z. Stoinov, and R. Kaishev. Izv. Otd. Khim. Nauk Bolg. AN, 2:479 (1969).Google Scholar
  25. 25.
    V. Bostanov, R. Rusinova, and E. Budevskii. Izv. Otd. Khim. Nauk Bolg. AN, 2:885 (1969).Google Scholar
  26. 26.
    T. Vitanov, A. Popov, and E. Budevskii. J. Electrochem. Soc. (1973).Google Scholar
  27. 27.
    E. Budevskii. J. Crystal Growth, 13 /14:93 (1972).ADSCrossRefGoogle Scholar
  28. 28.
    M. Volmer. Das elektrolytische Kristallwachstum. Paris, Herman (1934).Google Scholar
  29. 29.
    H. Brandes. Z. phys. Chem., 142A:97 (1927).Google Scholar
  30. 30.
    W. Lorenz. Z. Naturforsch., 9a:716 (1954).ADSGoogle Scholar
  31. 31.
    D. Vermilyea. J. Chem. Phys., 25:1254 (1956).ADSCrossRefGoogle Scholar
  32. 32.
    M. Fleischmann and H. R. Thirsk. Electrochim. Acta, 2:22 (1960).CrossRefGoogle Scholar
  33. 33.
    A. Damjanovic and J. O’M. Bockris. J. Electrochim. Soc., 110:1035 (1963).CrossRefGoogle Scholar
  34. 34.
    H. Gerischer. Protection against Corrosion by Metal Finishing, Forster Verlag, Zürich, (1967), p. 11.Google Scholar
  35. 35.
    N. Mott and R. Watts-Tobin. Electrochim. Acta, 4:79 (1961).CrossRefGoogle Scholar
  36. 36.
    C. Feather:Electrochemical Kinetics [Russian translation], Khimiya, Moscow (1967).Google Scholar
  37. 37.
    T. Vitanov, E. Sevast’yana, V. Bostanov, and E. Budevskii. Elektrokhimiya, 5:451 (1969).Google Scholar
  38. 38.
    T. Vitanov, E. Sevast’yana, Z. Stoinov, and E. Budevskii. Elektrokhimiya, 5:238 (1969).Google Scholar
  39. 39.
    B. Conway and J. O’M. Bockris. Proc. Roy. Soc., A243:394 (1958).ADSGoogle Scholar
  40. 40.
    A. Despic. Croat. Chim. Acta, 42:265 (1970).Google Scholar

Copyright information

© Consultants Bureau, New York 1976

Authors and Affiliations

  • E. Budevskii
  • V. Bostanov
  • T. Vitanov

There are no affiliations available

Personalised recommendations