Human Phosphoribosylpyrophosphate Synthetase: Relation of Activity and Quaternary Structure

  • Michael A. Becker
  • Laurence J. Meyer
  • William H. Huisman
  • Cheri S. Lazar
  • William B. Adams
Part of the Advances in Experimental Medicine and Biology book series


Evidence from a variety of biochemical, pharmacological and clinical studies indicates that the intracellular concentration of 5-phosphoribosyl 1-pyrophosphate (PP-ribose-P)1 is an important determinant of the rate of purine nucleotide and thus uric acid synthesis (Reviews, references 1,2). PP-Ribose-P formation (Figure 1) from ATP and ribose-5-phosphate is catalyzed by the enzyme PP-ribose-P synthetase in a reaction requiring inorganic phosphate (Pi) and magnesium. Small molecule inhibitors also affect PP-ribose-P synthetase activity and include purine, pyrimidine and pyridine nucleotides as well as 2,3-diphosphoglycerate (2,3-DPG) (3). The significance of regulation of the activity of this enzyme is apparent in several families in whom purine overproduction and clinical gout result from different structural mutations in PP-ribose-P synthetase which lead to excessive enzyme activity and PP-ribose-P generation (4–6).


Sucrose Magnesium Sedimentation Arginine Catalase 



5-phosphoribosyl 1-pyrophosphate




inorganic phosphate

2, 3-DPG

2, 3-diphosphoglycerate


sodium dodecylsulfate




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fox, I.H. and Kelley, W.N.: Ann. Intern. Med. 74: 424–433 (1971).PubMedGoogle Scholar
  2. 2.
    Becker, M.A. and Seegmiller,: Annu. Rev. Med. 25: 15–28 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    Fox, I.H. and Kelley, W.N.: J. Biol. Chem. 247: 2126–2131 (1972).PubMedGoogle Scholar
  4. 4.
    Sperling, O., Persky-Brosh, S., Boer, P. and DeVries, A.: Biochem. Med. 7: 389–395 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    Becker, M.A., Kostel, P.J., Meyer, L.J. and Seegmiller, J.E.: Proc. Natl. Acad. Sci. U.S.A. 70: 2749–2752 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    Becker, M.A.: J. Clin. Invest. 57: 308–318 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    Fox, I.H. and Kelley, W.N.: J. Biol. Chem. 246: 5739–5748 (1971).PubMedGoogle Scholar
  8. 8.
    Becker, M.A., Kostel, P.J. and Meyer, L.J.: J. Biol. Chem. 250: 6822–6830 (1975).PubMedGoogle Scholar
  9. 9.
    Neville, D.M., Jr.: J. Biol. Chem. 246: 6328–6334 (1971).PubMedGoogle Scholar
  10. 10.
    Reisfield, R.A. and Small, P.A.: Science 152: 1253–1255 (1966).CrossRefGoogle Scholar
  11. 11.
    Weiner, A.M., Piatt, T., and Weber, K.: J. Biol. Chem. 247: 3242–3251 (1972).Google Scholar
  12. 12.
    Yphantis, D.: Biochemistry 3: 297–317 (1964).PubMedCrossRefGoogle Scholar
  13. 13.
    McEwen, C.R.: Anal. Biochem. 20: 114–149 (1967).PubMedCrossRefGoogle Scholar
  14. 14.
    Ackers, G.K.: J. Biol. Chem. 242: 3237–3238 (1967).Google Scholar
  15. 15.
    Siegel, L.M. and Monty, K.J.: Biochim. Biophys. Acta 112: 346–362 (1966).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Michael A. Becker
    • 1
  • Laurence J. Meyer
    • 1
  • William H. Huisman
    • 1
  • Cheri S. Lazar
    • 1
  • William B. Adams
    • 1
  1. 1.Department of MedicineUniversity of California, San Diego and San Diego Veterans Administration HospitalLa JollaUSA

Personalised recommendations