Purine-Nucleoside Phosphorylase and Adenosine Aminohydrolase Activities in Fibroblasts with the Leschnyhan Mutation

  • J. Barankiewicz
  • M. M. Jeżewska
Part of the Advances in Experimental Medicine and Biology book series

Abstract

The Lesch-Nyhan syndrome is an X-linked disease (Lesch, Nyhan, 1964) characterized by a nearly total deficiency of the hypoxanthine-guanine phosphoribosyltransferase activity in several tissues including the fibroblasts (Seegmiller et al., 1967; Rosenbloom et al., 1967, 1968). The de novo synthesis of purine nucleotides is greatly enhanced, and the levels of hypoxanthine and xanthine are considerably increased (Rosenbloom et al., 1967; Balis et al., 1967). It has been postulated (Lee et al., 1973) that there is some coordinate control of the activities of the enzymes participating in the purine metabolic pathway; this control is suggested to be related to the levels of the intermediate metabolites. Barankiewicz et al. (1975) have found that in the mammary glands of mice the direction of changes in hypoxanthine-guanine phosphoribosyltransferase and purine-nucleoside phosphorylase activities was the same for both enzymes, i.e. they both either increased or dropped at the same time. Therefore, it was of interest to determine whether the activities of purine-nucleoside phosphorylase and adenosine aminohydrolase in the fibroblasts lacking hypoxanthine-guanine phosphoribosyltransferase are altered.

Keywords

Adenosine Adenine Thymidine Purine Guanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balis, M. E., Krakoff, J. H., Berman, P. H., and Dancis, J. (1967) Science, 156, 1122–1123.PubMedCrossRefGoogle Scholar
  2. Barankiewicz, J. and Jeżewska, M. M. (1976) Comp. Biochem. Physiol., 54B, 239–242.Google Scholar
  3. Barankiewicz, J., Jeżewska, M. M. and Chomczyński, P. (1975) FEBS Letters, 60, 384–387.PubMedCrossRefGoogle Scholar
  4. Pujimoto, W. Y. and Seegmiller, J. E., (1970) Proc. Nat. Acad. Sci., 65, 577–583.CrossRefGoogle Scholar
  5. Harnden, D. G. (1960) Brit. J. Exptl. Pathol., 40, 31–37.Google Scholar
  6. Kalckar, H. M. (1947) J. Biol. Chem., 167, 461.PubMedGoogle Scholar
  7. Kelley, W. N. and Meade, J. C. (1971) J. Biol. Chem., 246, 2953–2958.PubMedGoogle Scholar
  8. Kelley, W. N., Rosenbloom, P. M., Henderson, J. P. and Seegmiller, J. E. (1967) Proc. Nat. Acad. Sci., 57, 1735–1739.PubMedCrossRefGoogle Scholar
  9. Krenitsky, T. A., Neil, S. M. and Miller, R. L. (1970) J. Biol. Chem., 245, 2605–2611.PubMedGoogle Scholar
  10. Lee, P. C., Nickels, J. S. and Pisher, J. R. (1973) Arch. Biochem. Biophys., 158, 677–680.PubMedCrossRefGoogle Scholar
  11. Lesch, M. and Nyhan, W. L. (1964) Am. J. Med., 36, 561–570.PubMedCrossRefGoogle Scholar
  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  13. deMars, R. (1971) Fed. Proc., 30, No 3, part I, 944–955.PubMedGoogle Scholar
  14. Pawlus, M., Zaremba, J. S., Czartoryska, B., Barankiewicz, J., Dymecki, J. and Zaremba, J. M. (1973) Proc. 3rd Congress of Intern. Assoc. Scientific Study of Mental Retardation, Haga, PZWL ed., Poland, 220–228.Google Scholar
  15. Rosenbloom, F. M., Henderson, J. P., Caldwell, J. C., Kelley, W. N. and Seegmiller, J. E. (1968) J. Biol. Chem., 243, 1166–1173.PubMedGoogle Scholar
  16. Rosenbloom, F. M., Kelley, W. N., Miller, J., Henderson, J. P. and Seegmiller, J. E. (1967) J. Am. Med. Assoc., 202, 175–177.CrossRefGoogle Scholar
  17. Seegmiller, J. R., Rosenbloom, F. M. and Kelley, W. N. (1967) Science, 155, 1682–1684.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. Barankiewicz
    • 1
  • M. M. Jeżewska
    • 1
  1. 1.Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations