Skip to main content

Transepithelial Transport of Phosphate Anion in Kidney. Potential Mechanisms for Hypophosphatemia

  • Chapter
  • First Online:
Book cover Phosphate Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 81))

Abstract

The kidney is an important determinant of endogenous Pi pools in the mammal. Pi is filtered with plasma water and the major fraction of the filtered load is then reabsorbed by the tubule; a variable remainder is excreted (1–3). Many endogenous factors including PTH, Ca2+ and pH influence the process of net reabsorption, or reclamation, and it is now apparent that transepithelial transport of Pi in mammalian kidney is more complex than was anticipated from the classic observations of Pi reclamation (4, 5). Accordingly, we will consider the phenomenon of transepithelial transport which underlies net reabsorption, and the evidence for heterogeneity between nephrons, and within nephrons, in the response to regulatory events which influence Pi transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knox, F.G., Schneider, E.G., Willis, L.R., Strandhoy, J.W. and Ott, C.E. Site and control of phosphate reabsorption by the kidney. Kidney Int. 3:347,1973.

    Article  CAS  Google Scholar 

  2. Massry, S.G., Friedler, R.M. and Coburn, J.W. Excretion of phosphate and calcium. Physiology of their renal handling and relation to clinical medicine. Arch. Intern. Med. 131:828, 1973.

    Article  CAS  Google Scholar 

  3. Goldberg, M., Agus, Z.S. and Goldfarb, S. Renal handling of phosphate, calcium and magnesium. In Brenner, B.M. and Rector, F.C. Jr., The Kidney, Vol. I, 344, W.B. Saunders, Phila. 1976.

    Google Scholar 

  4. Pitts, R.F. The excretion of urine in the dog. Am. J. Physiol. 106: 1, 1933.

    Article  CAS  Google Scholar 

  5. Pitts, R.F. and Alexander, R.S. The renal reab-sorptive mechanism for inorganic phosphate in normal and acidotic dogs. Am. J. Physiol. 142:648, 1944.

    Article  CAS  Google Scholar 

  6. Smith, H.W. The Kidney. Structure and function in health and disease, p. 113, Oxford Univ. Press, New York, 1958.

    Google Scholar 

  7. Bijvoet, O.L.M. Relation of plasma phosphate concentration to renal tubular reabsorption of phosphate. Clin. Sci. 37:23, 1969.

    CAS  Google Scholar 

  8. Bijvoet, O.L.M., Morgan, D.B. and Fourman, P. The assessment of phosphate reabsorption. Clin. Chim. Acta 26:15, 1969.

    Article  CAS  Google Scholar 

  9. Stamp, T.C.B., Stacey, T.E. and Rose, G.A. Comparison of glomerular filtration rate measurements using inulin, 51CrEDTA and a phosphate infusion technique. Clin. Chim. Acta 30:351, 1970.

    Article  CAS  Google Scholar 

  10. Stamp, T.E.B. and Stacey, T.E. Evaluation of theoretical renal phosphorus threshold as an index of renal phosphorus handling. Clin. Sci. 39:505, 1970.

    Article  CAS  Google Scholar 

  11. Walton, R.J. and Bijvoet, O.L.M. Nomogram for derivation of renal threshold phosphate concentration. Lancet 2:309, 1975.

    Article  CAS  Google Scholar 

  12. Walton, R.J., Russell, R.G.G. and Smith, R. Changes in the renal and extrarenal handling of phosphate induced by disodium editronate (EHDP) in man. Clin. Sci. and Molec. Med. 49:45, 1975.

    CAS  Google Scholar 

  13. Kinne, R.K.H. Polarity of the renal proximal tubular cell. Function and enzyme pattern of the isolated plasma membranes. Med. Clin. N. Am. 59:615, 1975.

    Article  CAS  Google Scholar 

  14. Scriver, C.R., Chesney, R.W. and McInnes, R.R. Genetic aspects of renal tubular transport. Diversity and topology of carriers, Kidney Int. 9:149, 1976.

    Article  CAS  Google Scholar 

  15. Diamond, J.M. Tight and leaky junctions of epithelial A perspective on kisses in the dark. Fed. Proc. 33:2220, 1974.

    CAS  PubMed  Google Scholar 

  16. Sachs, J.R., Knauf, P.A. and Dunham, P.B. Transport through red cell membranes. In Surgenor, D.M. The Red Blood Cell Vol. 2, p. 613, 2nd edit. Academic Press, New York, 1975.

    Chapter  Google Scholar 

  17. Rothstein, A., Cabantchik, Z.I. and Knauf, P. Mechanism of anion transport in red blood cells and role of membrane proteins. Fed. Proc. 35:3, 1976.

    CAS  PubMed  Google Scholar 

  18. Jacquez, J.A. One-way fluxes of a-aminoisobutyric acid in Ehrlich ascites tumor cells. Trans effects and effects of sodium and potassium. J.Gen.Physiol.65:57,1975

    Article  CAS  Google Scholar 

  19. Lieb, W.R. and Stein, W.D. Implications of two different types of diffusion for biological membranes. Nature 234: 220, 1971.

    CAS  Google Scholar 

  20. Deuticke, B. Anion permeability of the red blood cell. Naturwissenschaften 57:172, 1970.

    Article  CAS  Google Scholar 

  21. Tenenhouse, H.S. and Scriver, C.R. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia. J. Clin. Invest. 55:644, 1975.

    Article  CAS  Google Scholar 

  22. Viera, F.L. and Malnic, G. Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Am. J. Physiol. 214:710, 1968.

    Article  Google Scholar 

  23. Strickler, J.C., Thompson, D.D., Klose, R.M. and Giebisch, G. Micropuncture study of inorganic phosphate excretion in the rat. J. Clin. Invest. 43: 1596, 1964.

    Article  CAS  Google Scholar 

  24. Borle, A.B. Calcium metabolism at the cellular level. Fed. Proc. 32:1944, 1973.

    CAS  PubMed  Google Scholar 

  25. Borle, A.B. Calcium and phosphate metabolism. Ann. Rev. Physiol. 36:361, 1974.

    Article  CAS  Google Scholar 

  26. Rose, B. and Loewenstein, W.R. Calcium ion distribution in cytoplasm visualized by Aequorin: Diffusion in cytosol restricted by energized sequestering. Science 190:1204, 1975.

    Article  CAS  Google Scholar 

  27. Boudry, J.-F., Troehler, U., Touabi, M., Fleisch, H. and Bonjour, J.-F. Secretion of inorganic phosphate in the rat nephron. Clin. Sci. Mol. Med. 48:475, 1975.

    CAS  Google Scholar 

  28. Frick, A. Reabsorption of inorganic phosphate in the rat kidney. I. Saturation of transport mechanism. II. Suppression of fractional phosphate reabsorption due to expansion of extracellular fluid volume. Pflügers Arch. 304:351, 1968.

    Article  CAS  Google Scholar 

  29. Engle, J.E. and Steele, T.H. Renal phosphate re-absorption in the rat: effect of inhibitors. Kidney Int. 8:98, 1975.

    Article  CAS  Google Scholar 

  30. Brunette, M.G., Taleb, L. and Carriere, S. Effect of parathyroid hormone on phosphate reabsorption along the nephron of the rat. Am.J. Physiol. 225:1076, 1973.

    Article  CAS  Google Scholar 

  31. Murayama, Y., Morel, F. and LeGrimellac, C. Phosphate, calcium and magnesium transfers in proximal tubules and loops of Henle, as measured by single nephron microperfusion experiments in the rat. Pflügers Arch. 338:1,1972

    Article  Google Scholar 

  32. Amiel, C., Kuntziger, H.E. and Richet, G. Micro-puncture study of handling of phosphate by proximal and distal nephron in normal and parathyroidectomized rat. Evidence for distal reabsorption. Pflügers Arch. 317: 93, 1970.

    Article  CAS  Google Scholar 

  33. Hamburger, R.J., Lawson, N.L. and Schwartz, J.H. Response to parathyroid hormone in defined segments of proximal tubule. Am. J. Physiol. 230: 286, 1976.

    Article  CAS  Google Scholar 

  34. Chabardès, D., Imbert, M., Clique, A., Montegut, M. and Morel, F. PTH sensitive adenyl cyclase activity in different segments of the rabbit nephron. Pflügers Arch. 354:229, 1975.

    Article  Google Scholar 

  35. Morel, F., Chabardès, D., Imbert, M., Montegut, M. and Clique, A. Functional segmentation of the rabbit distal tubule by microdetermination of hormone-dependent adenylate cyclase activity. Kidney Int. 9:264, 1976.

    Article  CAS  Google Scholar 

  36. Cuche, J.L., Ott, C.E., Marchand, G.R., Diaz-Buxo, J.A. and Knox, F.G. Intrarenal role of calcium in phosphate handling. Am. J. Physiol. 230:790, 1976.

    Article  CAS  Google Scholar 

  37. Glorieux, F. and Scriver, C.R. X-linked hypophosphatemia: Loss of a PTH-sensitive component of phosphate transport. Science 175: 997, 1972.

    Article  CAS  Google Scholar 

  38. Baker, P.F. Transport and metabolism of calcium ions in nerve. Prog, in Biophys. and Mol. Biol. Butter, J.A.V. and Noble V. eds.,24:179, 1972.

    Google Scholar 

  39. Rasmussen, H. Ionic and hormonal control of calcium homeostasis. Am. J. Med. 50:567, 1972.

    Article  Google Scholar 

  40. Bank, N., Aynedjian, H.S. and Weinstein, S.W. A microperfusion study of phosphate reabsorption by the rat proximal renal tubule. Effect of parathyroid hormone. J. Clin. Invest. 54:1040, 1974.

    Article  CAS  Google Scholar 

  41. Steele, T.H. and DeLuca, H.F. Influence of dietary phosphorus on renal phosphate reabsorption in the para-thyroidec tomized rat. J. Clin. Invest. 57:867, 1976.

    Article  CAS  Google Scholar 

  42. Scriver, C.R. and Hechtman, P. Human genetics of membrane transport with emphasis on amino acids. Adv. in Hum. Gen. 1:211, 1970.

    CAS  Google Scholar 

  43. Glorieux, F.H., Scriver, C.R., Reade, T.M., Goldman, H. and Roseborough, A. Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. New Eng. J. Med. 287;481, 1972.

    Article  CAS  Google Scholar 

  44. Eicher, E.M., Southard, J.L., Scriver, C.R. and Glorieux, F.H. Hypophosphatemia: Mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc. Nat. Acad. Sci. In press, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scriver, C.R., Stacey, T.E., Tenenhouse, H.S., MacDonald, W.A. (1977). Transepithelial Transport of Phosphate Anion in Kidney. Potential Mechanisms for Hypophosphatemia. In: Massry, S.G., Ritz, E. (eds) Phosphate Metabolism. Advances in Experimental Medicine and Biology, vol 81. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-4217-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4217-5_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-4219-9

  • Online ISBN: 978-1-4613-4217-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics