Skip to main content

Hyperfine Structure of Stored Ions — Results for 2s 2He+

  • Chapter
Atomic Physics 5

Abstract

The study of ions and their interactions by means of storage devices which hold them for long periods encompasses a broad range of experimental effort. In the area of collision studies, treated by G. Dunn1 at the 1974 International Conference on Atomic Physics (ICAP), it includes electron-ion recombination, spin and charge exchange, photo-dissociation, and ion-molecule reactions among others. Another broad area, the original emphasis of the technique, is the radio-frequency spectroscopy of stored ions. This area was pioneered by H. Dehmelt and his collaborators and was reported on at the first ICAP in 19682. The range of possible experiments here includes the traditional domain of rf spectroscopy of atomic and molecular species; e.g. magnetic moments, hyperfine structure and fine structure. New possibilities include the use of lasers as optical pumping sources and, beyond the rf frequency range, one expects two-photon laser spectroscopy on stored ions to emerge3. Closely allied to the above, but distinguished by their uniqueness and high degree of refinement, are the experiments of the U. Washington group to measure the anomalous magnetic moment of a single electron4.

Work supported by the Energy Research and Development Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.H. Dunn in Atomic Physics 4, G. zu Putlitz, E.W. Weber, and A. Winnacher, Editors, Plenum Press, New York and London, (1975), p. 575; see also F.L. Walls and G.H. Dunn, Physics Today, 27, 30 (1974).

    Google Scholar 

  2. H.G. Dehmelt in Atomic Physics, B. Bederson, V.W. Cohen and F.M.J. Pichanick, Editors, Plenum Press, New York (1969) p. 475.

    Google Scholar 

  3. R. Iff Lander and G. Werth, Fifth International Conference on Atomic Physics (Abstracts), R. Marrus, M.H. Prior and H.A. Shugart, Editors; Berkeley, Calif. (1976), p. 404.

    Google Scholar 

  4. R. Van Dyck, Jr., P. Ekstrom, and H. Dehmelt, Bull. Am. Phys. Soc. 21, 818 (1976); Fifth International Conference on Atomic Physics (Abstracts), R. Marrus, M.H. Prior and H.A. Shugart, Editors; Berkeley, Calif. (1976), p. 336.

    Google Scholar 

  5. M.H. Prior, H.A. Shugart, Phys. Rev. Lett. 27, 902 (1971); M.H. Prior, Phys. Rev. Lett. 29, 611 (1972).

    Article  ADS  Google Scholar 

  6. C. Barnett, et al., in the 1974 Review of the Research Program of the Division of Controlled Thermonuclear Research, ERDA-39, (1975) p. 143.

    Google Scholar 

  7. M.H. Prior and E.C. Wang, Phys. Rev. Lett. 35, 29 (1975)

    Article  ADS  Google Scholar 

  8. H.G. Dehmelt Advances in Atomic and Molecular Physics Vol. 3, Academic Press, New York (1967) p. 53; Vol. 5, (1969) p. 109.

    Google Scholar 

  9. H.A. Schuessler, E.N. Fortson and H.G. Dehmelt, Phys. Rev. 187, 5 (1969).

    Article  ADS  Google Scholar 

  10. F.G. Major and G. Werth, Phys. Rev. Lett. 30, 1155 (1973).

    Article  ADS  Google Scholar 

  11. H.G. Dehmelt and F.G. Major, Phys. Rev. Lett 8, 213 (1962); H.G. Dehmelt and K.B. Jefferts, Phys. Rev. 125, 1318 (1962).

    Article  ADS  Google Scholar 

  12. K.H. Kingdon, Phys. Rev. 21, 408 (1923).

    Article  ADS  Google Scholar 

  13. W.G. Mourad, T. Pauly and R.G. Herb, Rev. Sci. Instr. 35, 661 (1964)

    Article  ADS  Google Scholar 

  14. R. Novick and E.D. Commins, Phys. Rev. 111, 822 (1958).

    Article  ADS  Google Scholar 

  15. K.B. Jefferts, Phys. Rev. Lett: 20, 39 (1968); 23, 1476 (1969).

    Article  ADS  Google Scholar 

  16. H.W. Hellwig, Proc. IEEE 63, 212 (1975).

    Article  ADS  Google Scholar 

  17. H. Hellwig, et al., IEEE Trans. Instr. Meas. IM-19, 200 (1970).

    Article  Google Scholar 

  18. B.E. Lautrup, A. Peterman and E. de Rafael, Phys. Reports 3, 193 (1972).

    Article  ADS  Google Scholar 

  19. D.E. Zwanziger, Phys. Rev. 121, 1128 (1961).

    Article  ADS  Google Scholar 

  20. P.J. Mohr, private communication, has provided an improved value for a numerical integration in Ref. 19.

    Google Scholar 

  21. S.J. Brodsky and G.W. Erickson, Phys. Rev. 148, 26 (1966).

    Article  ADS  Google Scholar 

  22. A.M. Sessler and H.M. Foley, Phys. Rev. 98, 6 (1955).

    Article  ADS  MATH  Google Scholar 

  23. M.M. Sternheim, Phys. Rev. 130, 211 (1963).

    Article  ADS  Google Scholar 

  24. P.J. Mohr, Private Communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Prior, M.H., Wang, E.C. (1977). Hyperfine Structure of Stored Ions — Results for 2s 2He+ . In: Marrus, R., Prior, M., Shugart, H. (eds) Atomic Physics 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4202-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4202-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4204-5

  • Online ISBN: 978-1-4613-4202-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics