Advertisement

Polarized Electrons

  • M. S. Lubell

Abstract

Since 1972, when the last survey of Polarized Electrons was presented at an International Conference on Atomic Physics, the field has progressed to the point where it has entered a new phase, one which, I believe, has been long awaited by everyone involved in spin-dependent electron interactions. From the time the concept of electron spin was first introduced by Goudsmit and Uhlenbeck2,3 in what Sam Goudsmit has reminiscently called the “springtime of modern atomic physics,”4 a great many physicists have devoted their energies to the study of phenomena which have been related to the electron spin. These studies have spanned virtually all of the disciplines of physics. Time and space—and no doubt your restlessness—will not permit me to review all these marvelous studies. With your indulgence, however, I should like to recollect for you several of the hallmarks in the fifty year history of the field of “polarized electrons.” In using the term “polarized electrons” I am referring now to any ensemble of free electrons whose average spin direction is preferentially oriented in space.

Keywords

Atomic Beam Parity Violation Polarize Electron Photoionization Cross Section Alkali Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kessler in Atomic Physics 3, edited by Stephen J. Smith and G. King Walters (Plenum Press, New York, 1973), pp. 523–541.Google Scholar
  2. 2.
    S.A. Goudsmit and G.E. Uhlenbeck, Naturwiss. 13, 953 (1925).ADSGoogle Scholar
  3. 3.
    S.A. Goudsmit and G. Uhlenbeck, Nature 117, 264 (1926).ADSGoogle Scholar
  4. 4.
    Samuel A. Goudsmit and George E. Uhlenbeck, Physics Today, June 1976 29, 40 (1976).Google Scholar
  5. 5.
    P.A.M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928).ADSGoogle Scholar
  6. 6.
    N.F. Mott, Proc. Roy. Soc. (London) A124, 425 (1929).ADSGoogle Scholar
  7. 7.
    N.F. Mott, Proc. Roy. Soc. (London), A135, 429 (1932).ADSGoogle Scholar
  8. 8.
    C.G. Shull, C.J. Chase and F.E. Meyers, Phys. Rev. 63, 29 (1943).ADSGoogle Scholar
  9. 9.
    E.G. Dymond, Proc. Roy. Soc. A145, 657 (1934).ADSGoogle Scholar
  10. 10.
    H. Richter, Ann. Physik 28, 533 (1937).ADSGoogle Scholar
  11. 11.
    H.S.W. Massey and C.B.O. Mohr, Proc. Roy. Soc. (London) A177, 341 (1941).ADSGoogle Scholar
  12. 12.
    H.S.W. Massey and C.B.O. Mohr, Proc. Roy. Soc. (London) A182, 189 (1943).ADSGoogle Scholar
  13. 13.
    H. Deichsel, Z. Physik 164, 156 (1961).ADSGoogle Scholar
  14. 14.
    H. Steidl, E. Reichert and H. Deichsel, Phys. Lett. 17, 31 (1965); H. Deichsel and E. Reichert, Z. Physik 185, 169 (1965); E. Reichert, Z. Physik 173, 392 (1963).ADSGoogle Scholar
  15. 15.
    K. Jost and J. Kessler, Phys. Rev. Lett. 15, 575 (1965); J. Kessler and H. Lindner, Z. Physik 183, 1 (1965).ADSGoogle Scholar
  16. 16.
    Klaus Jost and Joachim Kessler, Z. Physik 195, 1 (1966).ADSGoogle Scholar
  17. 17.
    G. Holzwarth and H.J. Meister, Nucl. Phys. 59, 56 (1964); Tables of Asymmetry Cross Section and Related Functions for Mott Scattering of Electrons by Screened Au and Hg Nuclei (Univ. Munich, Munich, Germany, 1964).Google Scholar
  18. 18.
    P.J. Bunyan and J.L. Schonfelder, Proc. Phys. Soc. (London) 85, 455 (1965).ADSGoogle Scholar
  19. 19.
    J.L. Schonfelder, Proc. Phys. Soc. (London) 87, 163 (1966).ADSGoogle Scholar
  20. 20.
    W. Eitel, K. Jost and J. Kessler, Phys. Rev. 159, 47 (1967).ADSGoogle Scholar
  21. 21.
    T.D. Lee and C.N. Yang, Phys. Rev. 104, 254 (1956).ADSGoogle Scholar
  22. 22.
    C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes and R.P. Hudson, Phys. Rev. 105, 1413 (1957).ADSGoogle Scholar
  23. 23.
    J.D. Jackson, S.B. Trieman and H.W. Wyld, Phys. Rev. 106, 517 (1957).ADSGoogle Scholar
  24. 24.
    R.B. Curtis and R.R. Lewis, Phys. Rev. 107, 543 (1957).ADSMATHGoogle Scholar
  25. 25.
    K. Alder, B. Stech and A. Winther, Phys. Rev. 107, 728 (1957).ADSMATHGoogle Scholar
  26. 26.
    J.S. Greenberg, D.P. Malone, R.L. Gluckstern and V.W. Hughes, Phys. Rev. 120, 1393 (1960).ADSGoogle Scholar
  27. 27.
    N. Sherman, Phys. Rev. 103, 1601 (1956).ADSMATHGoogle Scholar
  28. 28.
    N. Sherman and D.F. Nelson, Phys. Rev. 114, 1541 (1959).ADSGoogle Scholar
  29. 29.
    Shin-R Lin, Phys. Rev. 133, A965 (1964).ADSGoogle Scholar
  30. 30.
    W. Bühring, Z. Physik 212, 61 (1968).ADSGoogle Scholar
  31. 31.
    L. Mikaelyan, A. Borovoi and E. Denisov, Nucl. Phys. 47, 328 (1963).Google Scholar
  32. 32.
    J. van Klinken, Nucl. Phys. 75, 161 (1966).Google Scholar
  33. 33.
    W. Eckstein, Institut für Plasmaphysik, München Report No. IPP 7/1, 1970 (unpublished).Google Scholar
  34. 34.
    H. Frauenfelder and A. Rossi, in Methods of Experimental Physics, edited by L.C.L. Yuan and C.S. Wu (Academic Press, New York, 1963), Vol. 5, Pt. B, pp. 214–274.Google Scholar
  35. 35.
    W. Raith, in Atomic Physics 1, edited by V.W. Hughes, B. Bederson, V.W. Cohen and F.M.J. Pichanick (Plenum Press, New York, 1969), pp. 389–415.Google Scholar
  36. 36.
    V.W. Hughes, R.L. Long, Jr., M.S. Lubell, M. Posner, and W. Raith, Phys. Rev. A 5, 195 (1972).ADSGoogle Scholar
  37. 37.
    B. Donnally, W. Raith, and R. Becker, Phys. Rev. Lett. 20, 575 (1968).ADSGoogle Scholar
  38. 38.
    R. Krisciokaitis and W.K. Peterson, DESY Report 73/63 (Deutsches Elektronen-Synchrotron, Hamburg, Germany, December, 1973).Google Scholar
  39. 39.
    D.M. Campbell, H.M. Brash and P.S. Farago, Phys. Lett. 36A, 449 (1971).ADSGoogle Scholar
  40. 40.
    U. Heinzmann, H. Heuer, and J. Kessler, Phys. Rev. Lett. 34, 441 (1975).ADSGoogle Scholar
  41. 41.
    H.D. Zeman, U. Heinzmann and D. Schinkowski, Fourth International Conference on Atomic Physics, Abstracts of Contributed Papers, Heidelberg, 1974 (unpublished), p. 394.Google Scholar
  42. 42.
    Herbert Zeman, in Electron and Photon Interactions with Atoms (Proceedings of the International Symposium on Electron and Photon Interactions with Atoms, Stirling, Scotland, 1974), edited by H. Kleinpoppen and M.R.C. McDowell (Plenum Press, New York, 1976), pp. 581–594.Google Scholar
  43. 43.
    P. Lambropoulos and M. Lambropoulos, in Electron and Photon Interactions with Atoms (Proceedings of the International Symposium on Electron and Photon Interactions with Atoms, Stirling, Scotland, 1974), edited by H. Kleinpoppen and M.R.C. McDowell (Plenum Press, New York, 1976), pp. 525–552.Google Scholar
  44. 44.
    P. Lambropoulos, private communication.Google Scholar
  45. 45.
    J.A. Simpson, in Methods in Experimental Physics, edited by L. Marton, V.W. Hughes and H. Schultz (Academic Press, New York, 1967), Vol. 4, Pt. A, p. 84.Google Scholar
  46. 46.
    M. Wilmers, R. Haug, and H. Deichsel, Z. Angew. Phys. 27, 204 (1969).Google Scholar
  47. 47.
    H.D. Zeman, K. Jost and S. Gilad, in Abstracts of the VIIth International Conference on the Physics of Electronic and Atomic Collisions, Amsterdam, 1971 (North Holland, Amsterdam, 1971), p. 1005.Google Scholar
  48. 48.
    G.F. Hanne and J. Kessler, J. Phys. B 9, 791 (1976), and 805 (1976).ADSGoogle Scholar
  49. 49.
    W.A. Bonner, M.A. VanDort, M.R. Yearian, Nature 258, 419 (1975).ADSGoogle Scholar
  50. 50.
    U. Heinzmann, J. Kessler and J. Lorenz, Z. Physik 240, 42 (1970).ADSGoogle Scholar
  51. 51.
    G. Baum, M.S. Lubell and W. Raith, Bull. Am. Phys. Soc. 16, 586 (1971).Google Scholar
  52. 52.
    W.V. Drachenfels, U.T. Koch, R.D. Lepper, T.M. Müller and W. Paul, Z. Physik 269, 387 (1974).ADSGoogle Scholar
  53. 53.
    W.V. Drachenfels, U.T. Koch, Th.M. Müller and H.R. Schaefer, Phys. Lett. 51A, 445 (1975).ADSGoogle Scholar
  54. 54.
    P.F. Wainwright, M.J. Alguard, G. Baum, V.W. Hughes, J.S. Ladish, M.S. Lubell and W. Raith, Bull. Am. Phys. Soc. 21, 573 (1976).Google Scholar
  55. 55.
    M.J. Alguard et al., in Proceedings of the Ninth International Conference on High Energy Accelerators, Stanford, California, 1974, CONF740522 (Stanford Linear Accelerator Center, Stanford, CA, 1974), p. 313.Google Scholar
  56. 56.
    P.S. Cooper et al., Phys. Rev. Lett. 34, 1589 (1975).ADSGoogle Scholar
  57. 57.
    M.J. Alguard et al., Bull. Am. Phys. Soc. 21, 35 (1976).Google Scholar
  58. 58.
    M.V. McCusker, L.L. Hatfield and G.K. Walters, Phys. Rev. A 5, 177 (1972).ADSGoogle Scholar
  59. 59.
    P.J. Kehiler, R.E. Gleason and G.K. Walters, Phys. Rev. A 4, 1279 (1975).ADSGoogle Scholar
  60. 60.
    M.J. Alguard et al., Bull. Am. Phys. Soc. 21, 98 (1976).Google Scholar
  61. 61.
    E.H.A. Granneman, M. Klewer, K. Nygaard and M.J. Van der Wiel, J. Phys. B 9, L1 (1976).Google Scholar
  62. 62.
    E.H.A. Granneman, M. Klewer, and M.J. Van der Wiel, submitted to J. Phys. B.Google Scholar
  63. 63.
    N. Müller, W. Eckstein and W. Heiland, Phys. Rev. Lett. 29, 1651 (1972).ADSGoogle Scholar
  64. 64.
    E. Kisker, G. Baum, A.H. Mahan and W. Raith, Phys. Rev. Lett. 36, 982 (1976).ADSGoogle Scholar
  65. 65.
    G. Busch, M. Campagna, P. Cotti and H. Ch. Siegmann, Phys. Rev. Lett. 22, 597 (1969).ADSGoogle Scholar
  66. 66.
    G. Busch, M. Campagna and H.C. Siegmann, J. Appl. Phys. 41, 1044 (1970).ADSGoogle Scholar
  67. 67.
    E. Garwin, F. Meier, D.T. Pierce, K. Sattler, and H.-C. Siegmann, Nucl. Instr. Meth. 120, 483 (1974).Google Scholar
  68. 68.
    D.T. Pierce, F. Meier and P. Zürcher, Appl. Phys. Lett. 26, 670 (1975).ADSGoogle Scholar
  69. 69.
    Daniel T. Pierce and Felix Meier, submitted to Phys. Rev.Google Scholar
  70. 70.
    G. Baum, private communication.Google Scholar
  71. 71.
    Daniel T. Pierce and R. Celotta, private communication.Google Scholar
  72. 72.
    C.K. Sinclair, private communication.Google Scholar
  73. 73.
    M.R. O’Neill, M. Kalisvaart, F.B. Dunning and G.K. Walters, Phys. Rev. Lett. 34, 1167 (1975).ADSGoogle Scholar
  74. 74.
    M.J. Seaton, Proc. Roy. Soc. (London) A208, 408 (1951).ADSGoogle Scholar
  75. 75.
    U. Fano, Phys. Rev. 178, 131 (1969).ADSGoogle Scholar
  76. 76.
    M.S. Lubell and W. Raith, Phys. Rev. Lett. 23, 211 (1969).ADSGoogle Scholar
  77. 77.
    G. Baum, M.S. Lubell, and W. Raith, Phys. Rev. Lett. 25, 267(1970).ADSGoogle Scholar
  78. 78.
    G. Baum, M.S. Lubell, and W. Raith, Phys. Rev. A 5, 1073 (1972).ADSGoogle Scholar
  79. 79.
    J. Kessler and J. Lorenz, Phys. Rev. Lett. 24, 87 (1970).ADSGoogle Scholar
  80. 80.
    U. Heinzmann, J. Kessler, and J. Lorenz, Z. Physik 240, 42 (1970).ADSGoogle Scholar
  81. 81.
    G.V. Marr and D.M. Creek, Proc. Roy. Soc. (London) A304, 233 (1968).ADSGoogle Scholar
  82. 82.
    W. Paul, priviate communication.Google Scholar
  83. 83.
    R.L. Long, Jr., W. Raith, and V.W. Hughes, Phys. Rev. Lett. 15, 1 (1965).ADSGoogle Scholar
  84. 84.
    M.E. Mack, Appl. Opt. 13, 46 (1974).ADSGoogle Scholar
  85. 85.
    E. Garwin, to be published.Google Scholar
  86. 86.
    D.E. Rothe, J. Quant. Spectrosc. Radiat. Transfer 11, 355 (1971).ADSGoogle Scholar
  87. 87.
    Yu. V. Moskvin, Opt. Spectrosc. 15, 316 (1963).Google Scholar
  88. 88.
    B. Ya’akobi, Proc. Phys. Soc. 21, 100 (1967).ADSGoogle Scholar
  89. 89.
    T.C. Caves and A. Dalgarno, J. Quant. Spectrosc. Radiat. Transfer 12, 1539 (1972).ADSGoogle Scholar
  90. 90.
    D. Norcross, private communication.Google Scholar
  91. 91.
    The data point at Iy=0.288 was obtained by the E80 collaboration at SLAC using Møller scattering, Ref. 56. The other four data points were obtained by the E95 collaboration at SLAC and have not yet been published.Google Scholar
  92. 92.
    J.E. Clendenin, et al., in preparation.Google Scholar
  93. 93.
    P. Lambropoulos, Phys. Rev. Lett. 30, 413 (1973).ADSGoogle Scholar
  94. 94.
    M. Lambropoulos, S.E. Moody, W.C. Lineberger, and S.J. Smith, Bull. Am. Phys. Soc. 18, 1514 (1973).Google Scholar
  95. 95.
    M.V. McCusker, L.L. Hatfield and G.K. Walters, Phys. Rev. Lett. 22, 817 (1969).ADSGoogle Scholar
  96. 96.
    P.J. Kehiler, F.B. Duhning, M.R. O’Neill, R.D. Rundel and G.K. Walters, Phys. Rev. A 11, 1271 (1975).ADSGoogle Scholar
  97. 97.
    G.K. Walters, private communication.Google Scholar
  98. 98.
    G. Obermair, Z. Physik 217, 91 (1968).ADSGoogle Scholar
  99. 99.
    H. von Issendorf and R. Fleischmann, Z. Physik 167, 11 (1962).ADSGoogle Scholar
  100. 100.
    R.L. Long, Jr., V.W. Hughes, J.S. Greenberg, I. Ames, and R.L. Christensen, Phys. Rev. 138, A1630 (1965).ADSGoogle Scholar
  101. 101.
    M. Holmann, G. Regenfus and O. Schärpf, Phys. Lett. 25A, 270 (1967).ADSGoogle Scholar
  102. 102.
    N. Müller, H. Siegmann and G. Obermair, Phys. Lett. 24A, 733 (1967).ADSGoogle Scholar
  103. 103.
    G. Chrobok, M. Hofmann, and G. Regenfus, Phys. Lett. 26A, 551 (1968).ADSGoogle Scholar
  104. 104.
    W. Gleich, G. Regenfus, and R. Sizmann, Phys. Rev. Lett. 27, 1066 (1971).ADSGoogle Scholar
  105. 105.
    U. Bänninger, G. Busch, M. Campagna, and H.C. Siegmann, Phys. Rev. Lett. 25, 585 (1970).ADSGoogle Scholar
  106. 106.
    G. Busch, M. Campagna and H.C. Siegmann, J. Appl. Phys. 42, 1779 (1971).ADSGoogle Scholar
  107. 107.
    G. Busch, M. Campagna and H.C. Siegmann, J. Appl. Phys. 42, 1781 (1971).ADSGoogle Scholar
  108. 108.
    K. Sattler and H.C. Siegmann, Phys. Rev. Lett. 29, 1565 (1972).ADSGoogle Scholar
  109. 109.
    S.F. Alvarado, W. Eib, H.C. Siegmann and J.P. Remeika, Phys. Rev. Lett. 35, 860 (1975).ADSGoogle Scholar
  110. 110.
    D.E. Eastman, Phys. Rev. B 8, 6027 (1973).ADSGoogle Scholar
  111. 111.
    R.L. Bell and W.E. Spicer, Proc. IEEE 58, 1788 (1970).Google Scholar
  112. 112.
    R. Celotta, private communication.Google Scholar
  113. 113.
    J. Kessler, Rev. Mod. Phys. 41, 3 (1969).ADSGoogle Scholar
  114. 114.
    H. Kleinpoppen, Phys. Rev. A 1, 2015 (1971).ADSGoogle Scholar
  115. 115.
    H. Kleinpoppen, “Analysis of Electron Atom Collisions,” (Center of Theoretical Studies, University of Miami, Coral Gables, Florida, 1969), Center for Theoretical Studies Report No. CTS-AP-75-L.Google Scholar
  116. 116.
    L.J. Weigert and M.E. Rose, Nucl. Phys. 51, 529 (1964).Google Scholar
  117. 117.
    J. Kuti and V.W. Weisskopf, Phys. Rev. D 4, 3418 (1971).ADSGoogle Scholar
  118. 118.
    J.D. Bjorken, Phys. Rev. D 1, 1376 (1970).ADSGoogle Scholar
  119. 119.
    F. Gilman, in Proceedings of Summer Institute on Particle Physics, Stanford Linear Accelerator Center, July 9–28, 1973 SLAC Report No. 167, 1973 (unpublished), Vol. 1, p. 71.Google Scholar
  120. 120.
    F. Close, Nucl. Phys. B80, 269 (1974).ADSGoogle Scholar
  121. 121.
    S.M. Berman and J.R. Primack, Phys. Rev. D 9, 2171 (1974).ADSGoogle Scholar
  122. 122.
    W.H. Louisell, R.W. Pidd and H.R. Crane, Phys. Rev. 94, 7 (1954).ADSGoogle Scholar
  123. 123.
    D.T. Wilkinson and H.R. Crane, Phys. Rev. 130, 852 (1963).ADSGoogle Scholar
  124. 124.
    J.C. Wesley and A. Rich, Phys. Rev. A 4, 1341 (1971).ADSGoogle Scholar
  125. 125.
    G.F. Hanne and J. Kessler, Phys. Rev. Lett. 11,341 (1974).ADSGoogle Scholar
  126. 126.
    R.H. Helm and W.P. Lysenko, SLAC Report No. SLAC-TN-72-1, 1972 (unpublished).Google Scholar
  127. 127.
    D.M. Schwartz, Phys. Rev. 162, 1306 (1967).ADSGoogle Scholar
  128. 128.
    A.M. Bincer, Phys. Rev. 107, 1434 (1957).MathSciNetADSMATHGoogle Scholar
  129. 129.
    See, for example, J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics, (McGraw Hill, New York, 1964), p. 140.Google Scholar
  130. 130.
    SLAC Users Handbook.Google Scholar
  131. 131.
    V. Bargmann, L. Michel, and V.L. Telegdi, Phys. Rev. Lett. 2, 435 (1959).ADSGoogle Scholar
  132. 132.
    R. Taylor, in Proceedings of the 1975 International Symposium on Lepton and Photon Interactions at High Energies, Stanford University, August 21–27, 1975 (Stanford Linear Accelerator Center, Stanford University, Stanford, CA, 1975), edited by W.T. Kirk, p. 679.Google Scholar
  133. 133.
    J.D. Bjorken, Phys. Rev. 179, 1547 (1969).ADSGoogle Scholar
  134. 134.
    M.J. Alguard et al., submitted to Phys. Rev. Letters.Google Scholar
  135. 135.
    N. Dombey, Rev. Mod. Phys. 41, 236 (1961).ADSGoogle Scholar
  136. 136.
    S.J. Brodsky and S.D. Drell, Ann. Rev. Nucl. Sci. 20, 147 (1970).ADSGoogle Scholar
  137. 137.
    H. Grotch and D.R. Yennie, Rev. Mod. Phys. 41, 350 (1969).ADSGoogle Scholar
  138. 138.
    D. Hils, M.V. McCusker, H. Kleinpoppen, and S.J. Smith, Phys. Rev. Lett. 29, 398 (1972).ADSGoogle Scholar
  139. 139.
    B. Bederson, in Atomic Physics 3, edited by S.J. Smith and G.K. Walters (Plenum, New York, 1973), p. 401.Google Scholar
  140. 140.
    Although the deep-inelastic scattering experiment with the polarized proton target did not have a parity violation search as its primary objective, a value of the asymmetry, r, defined by r = (dσ − dσ+)/(dσ − dσ+), was observed, where dσ and dσ+ are the inelastic differential cross sections for negative and positive electron helicities respectively. An experimental upper limit of r < 5 x 10−3 was determined at a 95% confidence level for values of Q2 between 1.42 (GeV/c)2 and 2.74 (GeV/c)2. However, gauge theories (Ref. 121) predict values of r ∼ (10−5 to 10−4) Q2/Mp 2, or in other words about two orders of magnitude lower than the sensitivity of the experiment. The unpolarized target experiment should improve this experimental sensitivity by about one order of magnitude, and future experiments are expected to increase the sensitivity to the point where values of r ∼ (10−6 to 10−5) Q2/Mp 2 will be observable, well below the gauge theory predictions.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • M. S. Lubell
    • 1
  1. 1.Gibbs LaboratoryYale UniversityNew HavenUSA

Personalised recommendations