Association of the 6-eV Optical Band in Sapphire with Oxygen Vacancies

  • B. D. Evans
  • H. D. Hendricks
  • F. D. Bazzarre
  • J. M. Bunch


Arnold and Compton(1) have demonstrated that the prominent 6-eV optical absorption band observed in reactor irradiated crystalline sapphire by Levy and Dienes(2,3) and Mitchell et al.(4) is due to atomic displacement events and not to ionizing radiation alone, as x-ray and γ-irradiation will not produce this band. The orientationally averaged displacement threshold energies associated with the product ion of the 6-eV band were determined to be 90±5 and 50± eV when the absorption is associated with respectively anion or cation vacancies by a series of low temperature 0.6-to-1.8 MeV electron irradiations. However, they were unable to determine which damaged sublattice, anion or cation, is responsible for the uv optical absorption. Arnold(5,6) et al. and Evans(7) have subsequently shown that energetic light ions such as 50-keV and 200-keV H+, 100-keV D+ (and 100-keV 3He+ to lesser degree) at fluences of 1016 cm-2 also produce the intense 6-eV, whereas bombardment to the same fluence with heavier ions such as 220-keV 0+, 500-keV A+ and 200-keV Xe+ results in virtually none of these characteristic bands. Arnold(5) has offered an explanation of these observations based on defect center charge decoration.


Anion Vacancy Optical Absorption Band Average Energy Density Excess Aluminum Damage Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.W. Arnold and W.D. Compton, Phys. Rev. Lett. 4, 66 (1960).ADSCrossRefGoogle Scholar
  2. 2.
    P.W. Levy and G.J. Dienes, Report of Bristol Conf. on Defects in Crystalline Solids, July, 1954 ( The Physical Society, London, 1955 ), p. 256.Google Scholar
  3. 3.
    P.W. Levy, Phys. Rev. 123, 1226 (1961).ADSCrossRefGoogle Scholar
  4. 4.
    E.W.J. Mitchell, J.D. Rigden and P.D. Townsend, Phil. Mag. 5, 1013 (1960).ADSCrossRefGoogle Scholar
  5. 5.
    G.W. Arnold, Proc. First Topical Meeting on the Technology of Controlled Nuclear Fusion, CONF-74042, (NTIS, Washington, D.C.), Vol. II, p. 500.Google Scholar
  6. 6.
    G.W. Arnold, G.B. Krefft, and C.B. Norris, Appl. Phys. Letters 25, 540 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    B.D. Evans, “Ion Beam Simulation of Fast-Neutron Damage in Crystalline Magnesia and Sapphire”, presented at Int. Conf. on the Application of Ion Beams to Materials, University of Warwick, U.K., 8–12 September 1975.Google Scholar
  8. 8.
    J.H. Schulman and W.D. Compton, Color Centers in Solids, (The MacMillan Co., New York, 1962 ), Ch. 1.Google Scholar
  9. 9.
    C.L. Marquardt and G.H. Sigel, Jr., IEEE Trans, on Nucl. Sci. NS-22, 2234 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    M.H. Woods and R. Williams, J. Appl. Phys. 47, 1082 ( 1976.ADSCrossRefGoogle Scholar
  11. 11.
    These are companion samples to those reported in J.M. Bunch and F.W. Clinard, Jr., J. Amer. Ceram. Soc. 57, 279 (1974).CrossRefGoogle Scholar
  12. 12.
    I. Manning and G.P. Mueller, Comput. Phys. Commun. 7, 85 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    J. Lindhard, M. Scharff and H.E. Schiott, Denske Videnskab. Selskab 33, No. 14 (1964).Google Scholar
  14. 14.
    B.D. Evans, Phys. Rev. B9, 5222 (1974).ADSGoogle Scholar
  15. 15.
    M.T. Robinson, in “Nuclear Fusion Reactors”, Proc. of Brit. Nucl. Energy Soc. Conf. on Nucl. Fusion Reactors, UKAEA Culham Laboratory, 17–19 September 1969, p. 364.Google Scholar
  16. 16.
    B.D. Evans, H.D. Hendricks, and J.M. Bunch, Amer. Ceram. Soc. Bull. 55, 458 (1976).Google Scholar
  17. 17.
    D.W. Muir and J.M. Bunch, Proc. Int. Conf. on Rad. Effects and Tritium Tech. for Fusion Reactors, Gatlinburg, TN., 1-3 Oct. 1975, USERDA CONF-750989, (NTIS, Washington, D.C. ), Vol. II, p. 517.Google Scholar
  18. 18.
    D. Curie, Luminescence in Crystals, (John Wiley and Sons, Inc., New York, 1963 ).Google Scholar
  19. 19.
    D.L. Dexter, Solid State Phys. 6, 353 (1958).CrossRefGoogle Scholar
  20. 20.
    H.M. Naguib, J.F. Singleton, W.A. Grant, and G. Carter, J. Mat1’s. Sci. 8, 1633 (1973).ADSCrossRefGoogle Scholar
  21. 21.
    S.Y. La, R.H. Bartram, and R.T. Cox, J. Phys. Chem. Solids 34, 1079 (1973).ADSCrossRefGoogle Scholar
  22. 22.
    R.A. Weeks, J. Appl. Phys. 27, (1956).Google Scholar
  23. 23.
    Y. Chen, W.A. Sibley, F.D. Srygley, R.A. Weeks, E.B. Hensley, and R.L. Kroes, J. Phys. Chem. Solids 29, 863 (1968).ADSCrossRefGoogle Scholar
  24. 24.
    J.C. Kemp, W.M. Ziniker, J.A. Glaze, and J.C. Cheng, Phys. Rev. 171, 1024 (1968).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Chen, J.L. Kolopus, and W.A. Sibley, Phys. Rev. 186, 865 (1969).ADSCrossRefGoogle Scholar
  26. 26.
    B.D. Evans, J.C. Cheng, and J.C. Kemp, Phys. Letters 274, 506 (1968).ADSGoogle Scholar
  27. 27.
    T.F. Luera, J.A. Borders, and G.W. Arnold, presented at V Int. Conf. on Ion Implantation in Semiconductors and Other Materials, Univ. of Colorado, Boulder, CO., 9–13 August 1976, IV-4; also appearing in this volume.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • B. D. Evans
    • 1
  • H. D. Hendricks
    • 2
  • F. D. Bazzarre
    • 3
  • J. M. Bunch
    • 4
  1. 1.Material Sciences DivisionNaval Research LaboratoryUSA
  2. 2.NASA Langley Research CenterHamptonUSA
  3. 3.Technics, Inc.AlexandriaUSA
  4. 4.Los Alamos Scientific LaboratoryLos AlamosUSA

Personalised recommendations