Advertisement

Investigation of Immunochemical Reactions by Fluorescence Polarization

Chapter

Abstract

Fluorescence polarization provides the biologist and the chemist with a highly sensitive and versatile probe for investigating both the structural features and molecular motions of macromolecules. It provides information on the individual isolated molecule, as well as on the interactions occurring with other molecules, and is hence adaptable to a diversity of equilibrium and kinetic measurements over extremely wide ranges of concentration and time. The magnitude of the steady-state polarization (or the anisotropy) observed in the fluorescent light emitted from solutions is a function of several variables. It depends upon the relaxation time of the rotary Brownian motion, the decay time of the electronically excited state, and the relative orientations of the transition moments for absorption and emission. If the transient-state polarization is observed after the excitation has been cut off, then the polarization is a function of time as well. Measurements of both the steady-state and transient-state polarization are well known (Dandliker and deSaussure, 1970; Yguerabide, 1972) and are usually analyzed in terms of rotational motions of the fluorescent unit and of relaxation phenomena involving the macromolecule or solvent. The latter effects may be, in part, induced by the difference in free energy between the ground and the electronically excited states. In the last few years, there have been substantial advances in the theory of fluorescence polarization (Tao, 1969; Weber, 1971; Belford et al, 1972; Chuang and Eisenthal, 1972) together with improvements in instrumentation both for transient-state (Yguerabide, 1972) and for steady-state measurements (Kelly, Dandliker, and Williamson, 1976).

Keywords

Fractional Order Association Constant Fluorescence Polarization Forward Rate Ionic Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belford, G. G., Belford, R. L., and Weber, G., 1972, Proc. Natl. Acad. Sci. U.S.A. 69: 1392.Google Scholar
  2. Chuang, T. J., and Eisenthal, K. B., 1972, J. Chem. Phys. 57: 5094.CrossRefGoogle Scholar
  3. Dandliker, W. B., 1971, in: Methods in Immunology and Immunochemistry, Vol. Ill (C. A. Williams and M. W. Chase, eds.), p. 435, Academic Press, New York.Google Scholar
  4. Dandliker, W. B., and de Saussure, V. A., 1970, Immunochemistry 7: 799.PubMedCrossRefGoogle Scholar
  5. Dandliker, W. B., and de Saussure, V. A., 1971, in: The Chemistry of Biosurfaces, Vol. I (M. L. Hair, ed.), p. 1, Dekker, New York.Google Scholar
  6. Dandliker, W. B., and Levison, S. A., 1968, Immunochemistry 5: 171.PubMedCrossRefGoogle Scholar
  7. Dandliker, W. B., Schapiro, H. C., Meduski, J. W., Alonso, R., Feigen, G. A., and Hamrick, J. R., Jr., 1964, Immunochemistry 1: 165.PubMedCrossRefGoogle Scholar
  8. Dandliker, W. B., Halbert, S. P., Florin, M. C., Alonso, R., and Schapiro, H. C., 1965, J. Exp. Med. 122: 1029.PubMedCrossRefGoogle Scholar
  9. Dandliker, W. B., Alonso, R., de Saussure, V. A., Kierszenbaum, F., Levison, S. A., and Schapiro, H. C., 1967, Biochemistry 6: 1460.PubMedCrossRefGoogle Scholar
  10. Dandliker, W. B., Kelly, R. J., Dandliker, J., Farquhar, J., and Levin, J., 1973, Immunochemistry 10: 219.PubMedCrossRefGoogle Scholar
  11. Day, L. A., Sturtevant, J. M., and Singer, S. J., 1963, Ann. N.Y. Acad. Sci. 103: 611.PubMedCrossRefGoogle Scholar
  12. Gafni, A., and Steinberg, I. Z., 1972, Photochem. Photobiol. 15: 93.CrossRefGoogle Scholar
  13. Hamaguchi, K., and Geiduschek, E. P., 1962, J. Am. Chem. Soc. 84: 1329.CrossRefGoogle Scholar
  14. Haurowitz, F., 1952, Biol. Rev. Cambridge Philos. Soc. 27: 247.CrossRefGoogle Scholar
  15. Holowka, D. A., Strosberg, A. D., Kimball, J. W., Haber, E., and Cathou, R. E., 1972, Proc. Nat. Acad. Sci. U.S.A. 69:3399. Karush, F., 1962, Adv. Immunol. 2: 1.Google Scholar
  16. Kelly, R. J., Dandliker, W. B., and Williamson, D. E., 1976, Anal. Chem. 48: 846.CrossRefGoogle Scholar
  17. Kierszenbaum, F., Dandliker, J., and Dandliker, W. B., 1969, Immunochemistry 6: 125.PubMedCrossRefGoogle Scholar
  18. Levison, S. A., and Dandliker, W. B., 1969, Immunochemistry 6: 253.PubMedCrossRefGoogle Scholar
  19. Levison, S. A., Kierszenbaum, F., and Dandliker, W. B., 1970, Biochemistry 9: 322.PubMedCrossRefGoogle Scholar
  20. Levison, S. A., Portmann, A. J., Kierszenbaum, F., and Dandliker, W. B., 1971, Biochem. Biophys. Res. Comm. 43: 258.PubMedCrossRefGoogle Scholar
  21. Levison, S. A., Hicks, A. N., Portmann, A. J., and Dandliker, W. B., 1975, Biochemistry 14: 3778.PubMedCrossRefGoogle Scholar
  22. Lopatin, D. E., and Voss, E. D., 1971, Biochemistry 10:208. Mavis, D., Schapiro, H. C., and Dandliker, W. B., 1974, Anal. Biochem. 61: 528.Google Scholar
  23. Pilz, I., Kratky, O., Licht, A., and Sela, M., 1973, Biochemistry 12: 4998.PubMedCrossRefGoogle Scholar
  24. Pollet, R., and Edelhoch, H., 1974, J. Biol. Chem. 249: 5188.PubMedGoogle Scholar
  25. Portmann, A. J., Levison, S. A., and Dandliker, W. B., 1975, Immunochemistry 12: 461.PubMedCrossRefGoogle Scholar
  26. Schlessinger, J., and Steinberg, I. Z., 1972, Proc. Natl. Acad. Sci. U.S.A. 69: 769.PubMedCrossRefGoogle Scholar
  27. Tao, T., 1969, Biopolymers 8: 609.CrossRefGoogle Scholar
  28. Van Hell, H., Goverde, B. C., Schuurs, A. H. W. M., De Jager, E., Matthijsen, R., and Homan, J. D. H., 1966, Nature (London) 212: 261.Google Scholar
  29. Weber, G., 1971, J. Chem. Phys. 55: 2399.CrossRefGoogle Scholar
  30. Yguerabide, J., 1972, in: Methods in Enzymology Vol. XXVI (C. H. W. Hirs and S. N. Timasheff, eds.), p. 498, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  1. 1.Department of BiochemistryScripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations