Advertisement

Abstract

The use of the Montroll-Weiss continuous-time random walk, with infinite mean waiting times, to model photo-currents in xerographic films has led to new inequalities of the gamma function. Certain special function inequalities can also be derived.

Keywords

Random Walk Gamma Function Tauberian Theorem Moment Inequality Neural Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    M. Barber and B. Ninham, “Random and Restricted Walks: Theory and Applications,” ( Gordon and Breach, N.Y., 1970 ).Google Scholar
  2. 2.
    E.W. Montroll and G.H. Weiss, J. Math. Phys. 6, 167 (1965).CrossRefGoogle Scholar
  3. 3.
    H. Scher and M. Lax, Phys. Rev. B7_, 4491 (1973), Ibid. B7, 4502 (1973).Google Scholar
  4. 4.
    E.W. Montroll and H. Scher, J. Stat. Phys. 9 101 (1973).CrossRefGoogle Scholar
  5. 5.
    H. Scher and E.W. Montroll, Phys. Rev. B12, 2455 (1975).Google Scholar
  6. 6.
    M.F. Shlesinger, J. Stat. Phys. 10, 421 (1974).CrossRefGoogle Scholar
  7. 7.
    J.R. Clay and M.F. Shlesinger, Biophys. J. 16, 121 (1976), (and to be published in J. Theor. Bio.).Google Scholar
  8. 8.
    W.J. Shugard and H. Reiss, J. Chem. Phys. 65, 2827, (1976).CrossRefGoogle Scholar
  9. 9.
    U. Landman, E.W. Montroll, and M.F. Shlesinger,. Proc. Nat. Acad. Sci. (USA), 74, 430, (1977).CrossRefGoogle Scholar
  10. 10.
    G.H. Weiss, J. Stat. Phys. 15, 157 (1976).CrossRefGoogle Scholar
  11. 11.
    U. Landman, E.W. Montroll, and M.F. Shlesinger, Phys. Rev. Lett., 38, 285 (1977).CrossRefGoogle Scholar
  12. 12.
    L. van Hove, Physica, 23, 441 (1957).CrossRefGoogle Scholar
  13. 13.
    I. Prigogine and P. Resibois, Physica, 27, 629 (1961); E.W. Montroll, in “Fundamental Problems in Statistical Mechanics”, E.G.D. Cohen, ed., (North-Holland, Amsterdam, 1962); R.W. Zwanzig, Physica, 30, 1109 (1964).Google Scholar
  14. 14.
    V.M. Kenkre, E.W. Montroll, M.F. Shlesinger, J. Stat. Phys., 9, 101 (1973).CrossRefGoogle Scholar
  15. 15.
    D. Bedeaux, K. Lakatos-Lindenberg, and K. Shuler, J. Math. Phys. 12, 2116 (1971).CrossRefGoogle Scholar
  16. 16.
    V.M. Kenkre and R.S. Knox, Phys. Rev. B 9_, 5279 (1974).Google Scholar
  17. 17.
    K. Lindenberg and D. Bedeaux, Physica, 57, 157 (1972).CrossRefGoogle Scholar
  18. 18.
    K. Lindenberg, D. Bedeaux and M.F. Shlesinger, (unpublished).Google Scholar
  19. 19.
    W. Feller, “An Introduction to Probability Theory and Its Applications” (Wiley, N.Y., 1966), Vol.2, pp. 59, 360.Google Scholar
  20. 20.
    E.W. Montroll, J. Math, and Phys. 25, 37 (1946).Google Scholar
  21. 21.
    R. Merrifield, J. Chem. Phys., 28, 647 (1958).CrossRefGoogle Scholar
  22. 22.
    E. Schrodinger, Ann. Phys. 44, 191 (1914).Google Scholar
  23. 23.
    J. Keilson, Am. Math. Stat. 43, 1702 (1972).CrossRefGoogle Scholar
  24. 24.
    M.G. Kendall and A. Stuart, “Theory of Statistics,” Hafner Pub. (1969).Google Scholar
  25. 25.
    D.M. Roberts, in “Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability,” ed. by L.M. LeCam, J. Neyman, and E.L. Scott, (Univ. of California Press, Berkeley and Los Angeles, 1972 ). Vol. 1.Google Scholar

Copyright information

© Plenum New York 1977

Authors and Affiliations

  • Michael F. Shlesinger
    • 1
  1. 1.Institute for Fundamental Studies Department of Physics and AstronomyUniversity of RochesterRochesterUSA

Personalised recommendations