Advertisement

Radiation-Induced Processes in Nonionic Micelles

  • K. Kalyanasundaram
  • J. K. Thomas

Abstract

The static and dynamical properties of nonionic micelles (Triton X-100, Igepal CO-630 and Brij-35) in aqueous solution have been investigated by pulsed 1H, 13C NMR relaxation, fluorescence probing and pulse radiolysis techniques. Chemical shifts and spin lattice relaxation times presented for the various resolved resonances in the proton and proton-decoupled 13C NMR spectra provide detailed information on the nature and segmental mobility of hydrocarbon chains in micellar core and that of ethylene oxide units in the palisade layer. The permeability of these nonionic micelles with respect to various species (ionic and nonionic) has been investigated by examining the dynamics of quenching of fluorescence emitted by “external” probe such as pyrene and “built in” phenoxyl unit. The basic photophysical features such as UV absorption, fluorescence lifetime and quantum yields for phenoxyl chromophore are also reported and these are used to gain information on the environment around these probes. Efficient excitation singlet energy transfer between phenoxyl unit and pyrene (solubilized in micellar core) has been observed.

Keywords

Segmental Mobility Phenoxyl Group Laser Photolysis Hydrated Electron Micellar Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Tanford, “The Hydrophobic Effect: Formation of Micelles and Biological Membranes,” Wiley-Interscience, New York, 1973.Google Scholar
  2. 2.
    J. H. Fendler and E. J. Fendler, “Catalysis in Micellar and Macromolecular Systems,” Academic Press, New York, 1975.Google Scholar
  3. 3.
    M. Gratzel and J. K. Thomas, in “Modern Fluorescence Spectroscopy,” E. L. Wehry, Editor, Plenum Press, New York, to appear.Google Scholar
  4. 4.
    R. L. Vold, J. S. Waugh, M. P. Klein and D. E. Phelps, J. Chem. Phys. 48, 3831 (1968).CrossRefGoogle Scholar
  5. 5.
    R. McNeil, J. T. Richards and J. K. Thomas, J. Phys. Chem. 74, 2290 (1970).CrossRefGoogle Scholar
  6. 6.
    J. Clifford and B. A. Pethica, Trans. Faraday Soc. 60, 1453 (1964); 61, 182 (1965).CrossRefGoogle Scholar
  7. 7.
    J. Clifford, ibid. 61, 1276 (1965).Google Scholar
  8. 8.
    E. Williams, B. Sears, A. Allerhand and E. H. Cordes, J. Amer. Chem. Soc. 95, 4871 (1973).CrossRefGoogle Scholar
  9. 9.
    R. T. Roberts and C. Chachaty, Chem. Phys. Lett. 22, 348Google Scholar
  10. 10.
    L. M. Corkill, J.F. Goodman and J. Wyer, Trans. Faraday Soc. 65, 9 (1969).CrossRefGoogle Scholar
  11. 11.
    C. J. Clemett, J. Chem. Soc, A, 2251 (1970).Google Scholar
  12. 12.
    F. Podo, A. Roy and G. Nemethy, J. Amer. Chem. Soc. 95, 6164 (1973).CrossRefGoogle Scholar
  13. 13.
    A. A. Ribeiro and E. A. Dennis, Chem. Phys. Lipids 14, 193 (1975); Biochem. 14, 3746 (1975).CrossRefGoogle Scholar
  14. 14.
    A. Abragam, “Principles of Nuclear Magnetism,” Oxford University Press, London, 1961.Google Scholar
  15. 15.
    A. Carrington and A. D. McLachlan,, “Introduction to Magnetic Resonance,” Harper and Row, New York, 1967.Google Scholar
  16. 16.
    K. Kalyanasundaram, M. Gratzel and J. K. Thomas, J. Amer. Chem. Soc. 97, 3915 (1975).CrossRefGoogle Scholar
  17. 17.
    J. R. Lyerla, H. M. McIntyre and D. M. Torchia, Macromolecules 7, 11 (1974).CrossRefGoogle Scholar
  18. 18.
    G. C. Levy, R. A. Komoroski and J. A. Halstead, J. Amer. Chem. Soc. 96, 3456 (1974).CrossRefGoogle Scholar
  19. 19.
    G. Cornelius, W. Gartner and D. H. Haynes, Biochem. 13, 2052 (1974).Google Scholar
  20. 20.
    T. Platzner, M. Gratzel and J. K. Thomas, (1974) unpublished results.Google Scholar
  21. 21.
    W. B. Gratzer and G. H. Beaven, J. Phys. Chem. 73, 2270 (1969).CrossRefGoogle Scholar
  22. 22.
    S. Ikeda and G. D. Fasman, J. Polym. Sci. 8, 991 (1970).Google Scholar
  23. 23.
    A. Ray and G. Némethy, J. Phys. Chem. 74, 809 (1971).Google Scholar
  24. 24.
    J. Lang and E. M. Eyring, J. Polym. Sci. 42(10), 89 (1972).Google Scholar
  25. 25.
    Th. Forster, Angew. Chem. Intl Edit. 8, 333 (1969).Google Scholar
  26. 26.
    Th. Forster, Disc. Faraday Soc. 27, 7 (1959).CrossRefGoogle Scholar
  27. 27.
    S.C. Wallace, M. Gratzel and J. K. Thomas, Chem. Phys. Lett. 23 359 (1973).CrossRefGoogle Scholar
  28. 28.
    M. Gratzel and J. K. Thomas, J. Phys. Chem. 78, 2248 (1974).CrossRefGoogle Scholar
  29. 29.
    M. Gratzel, J. J. Kozak and J. K. Thomas, J. Chem. Phys. 62, 1632 (1975).CrossRefGoogle Scholar
  30. 30.
    M. Gratzel, J. K. Thomas and L. K. Patterson, Chem. Phys. Lett. 29, 393 (1974).CrossRefGoogle Scholar
  31. 31.
    J. T. Richards, G. West and J. K. Thomas, J. Phys. Chem. 74, 4137 (1970).CrossRefGoogle Scholar
  32. 32.
    M. Gratzel, K. Kalyanasundaram and J. K. Thomas, J. Amer. Chem. Soc. 97, 7869 (1974).CrossRefGoogle Scholar
  33. 33.
    S. C. Wallace and J. K. Thomas, Radiat. Res. 54, 49 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • K. Kalyanasundaram
    • 1
  • J. K. Thomas
    • 1
  1. 1.Department of Chemistry and Radiation LaboratoryUniversity of Notre DameNotre DameUSA

Personalised recommendations