Skip to main content

Abstract

Any symposium which deals with the metabolic formation and inactivation of reactive metabolites must necessarily consider the prominent role played by glutathione (GSH) and the glutathione transferases since this simple tripeptide (Fig. 1) and the enzymes which employ GSH as a cosubstrate represent a very important factor in the protection of cellular constituents from the adverse effects of reactive chemicals. Thiols such as GSH are highly reactive as nucleophiles. In addition, thiols readily give up hydrogen atoms on reaction with radicals. Thus the importance of GSH in its spontaneous reactions with electrophiles and free radicals within the cell cannot be overemphasized. The remarkably high concentration of 10−4 to 10−2 M GSH (1) in aerobic cells cannot be serendipitous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. M. Kosower, Chemical properties of glutathione, in: Glutathione, Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 1–15, Raven Press, New York (1976).

    Google Scholar 

  2. L. F. Chasseaud, Conjugation with glutathione and mercapturic acid excretion, in: Glutathione, Metabolism and Function ( I. M. Arias and W. B. Jakoby, eds.), pp. 77–114, Raven Press, New York (1976).

    Google Scholar 

  3. L. F. Chasseaud, The nature and distribution of enzymes catalyzing the conjugation of glutathione with foreign compounds, DrugMetab. Rev. 2, 185–220 (1973).

    CAS  Google Scholar 

  4. J. L. Wood, Biochemistry of mercapturic acid formation, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. II (W. H. Fishman, ed.), pp. 261–299, Academic Press, New York (1970).

    Google Scholar 

  5. E. Boyland and L. F. Chasseaud, The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis, Adv. Enzymol. 32, 173–219 (1969).

    CAS  Google Scholar 

  6. J. B. Hendrickson, D. J. Cram, and G. S. Hammond, Organic Chemistry, McGraw-Hill, New York (1970).

    Google Scholar 

  7. W. H. Habig, J. H. Keen, and W. Jakoby, Glutathione S-transferase in the formation of cyanide from organic thiocyanates and as an organic nitrate reductase, Biochem. Biophys. Res. Commun. 64, 501–506 (1975).

    Article  CAS  Google Scholar 

  8. T. A. Fjellstedt, R. H. Allen, B. K. Duncan, and W. Jakoby, Enzymatic conjugation of epoxides with glutathione, J. Biol. Chem. 248, 3702–3707 (1973).

    PubMed  CAS  Google Scholar 

  9. W. H. Habig, M. J. Pabst, and W. B. Jakoby, Glutathione S-transferases: The first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249, 7130–7139 (1974).

    PubMed  CAS  Google Scholar 

  10. W. B. Jakoby, W. H. Habig, J. H. Keen, J. N. Ketley, and M. J. Pabst. Glutathione S-transferases: Catalytic aspects, in: Glutathione, Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 189–211, Raven Press, New York (1976).

    Google Scholar 

  11. K. Kamisaka, W. H. Habig, J. N. Ketley, L. M. Arias, and W. B. Jakoby, Multiple forms of human glutathione S-transferase and their affinity for bilirubin, Eur. J. Biochem. 60, 153–161 (1975).

    Article  PubMed  CAS  Google Scholar 

  12. B. Ketterer, P. Ross-Mansell, and J. K. Whitehead, The isolation of a carcinogen-binding protein from livers of rats given 4-dimethylaminoazobenzene, Biochem. J. 103, 316–324 (1967).

    PubMed  CAS  Google Scholar 

  13. G. Litwak, B. Ketterer, and I. M. Arias, Ligandin: A hepatic protein which binds steroids, bilirubin, carcinogens, and a number of exogeneous organic anions, Nature (London) 234, 466–467 (1971).

    Article  Google Scholar 

  14. J. A. Meuwissen, B. Ketterer, and B. B. Mertens, Binding constants for haem and bilirubin to purified ligandins, Digestion 6, 293 (1972).

    Google Scholar 

  15. A. J. Levi, A. Gatamaitan, and I. M. Arias, The role of two hepatic cytoplasmic proteins (Y and Z) in the transfer of sulfobromophthalein (BSP) and bilirubin from plasma into liver, J. Clin. Invest. 48, 2156–2167 (1969).

    Article  PubMed  CAS  Google Scholar 

  16. K. S. Morey and G. Litwak, Purification and properties of cortisol metabolite binding proteins of rat liver cytosol, Biochemistry 8, 4813–4821 (1969).

    Article  PubMed  CAS  Google Scholar 

  17. W. H. Habig, M. J. Pabst, G. Fleischner, Z. Gatmaitan, I. M. Arias, and W. B. Jakoby, The identity of glutathione S-transferase B with ligandin, a major binding protein of liver, Proc. Natl. Acad. Sci. USA 71, 3879–3882 (1974).

    Article  PubMed  CAS  Google Scholar 

  18. I. M. Arias, G. Fleischner, R. Kirsch, S. Mishkin, and Z. Gatmaitan, On the structure, regulation, and function of ligandin, in: Glutathione, Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 175–188, Raven Press, New York (1976).

    Google Scholar 

  19. M. J. Pabst, W. H. Habig, and W. B. Jakoby, Glutathione S-transferase A. A.novel kinetic mechanism in which the major reaction pathway depends on substrate concentration, J. Biol. Chem. 249, 7140–7148 (1974).

    CAS  Google Scholar 

  20. C. W. Abel and C. Heidelberger, The interaction of carcinogenic hydrocarbons with tissue constituents. VIII. Binding of tritium-labeled hydrocarbons to the soluble proteins of mouse skin, Cancer Res. 22, 931–946 (1962).

    Google Scholar 

  21. A. M. Sarrif and C. Heidelberger, On the interaction of chemical carcinogens with soluble proteins of target tissues and in cell culture in: Glutathione, Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 317–338, Raven Press, New York (1976).

    Google Scholar 

  22. N. Kaubisch, D. M. Jerina, and J. W. Daly, Arene oxides as intermediates in the oxidative metabolism of aromatic compounds: Isomerization of methyl substituted arene oxides, Biochemistry 11, 3080–3088 (1972).

    Article  PubMed  CAS  Google Scholar 

  23. B. J. Auret, D. R. Boyd, P. M. Robinson, C. Watson, J. W. Daly, and D. M. Jerina, The NIH shift during hydroxylation of aromatic substrates by fungi, J. Chem. Soc. (D) Chem. Commun. 1585–1587 (1971).

    Google Scholar 

  24. P. K. Ayengan, O. Hayaisha, M. Nakajima, and J. Tomida, Enzymatic aromatization of 3,5-cyclohexadiene-1,2-diol, Biochim. Biophys. Acta 33, 111–119 (1959).

    Article  Google Scholar 

  25. D. M. Jerina, H. Ziffer, and J. W. Daly, The role of the arene oxide—oxepin system in the metabolism of aromatic substrates. IV. Stereochemical considerations of dihydrodiol formation and dehydrogenation, J. Am. Chem. Soc. 92, 1056–1061 (1970).

    Article  CAS  Google Scholar 

  26. A. M. Jeffrey, H. J. C. Yeh, D. M. Jerina, T. R. Patel, J. F. Davey, and D. T. Gibson, Initial reactions in the oxidation of naphthalene by Pseudomonas putida, Biochemistry 14, 575–584 (1975).

    Article  PubMed  CAS  Google Scholar 

  27. P. J. Murphy, J. R. Bernstein, and R. E. McMahon, The formation of catechols by consecutive hydroxylations: A study of the microsomal hydroxylation of butarnoxane,Mol. Pharmacol. 10, 634–639 (1974).

    CAS  Google Scholar 

  28. J. Booth, A. Hewer, G. R. Keysell, and P. Sims, Enzymic reduction of aromatic hydrocarbon epoxides by the microsomal fraction of rat liver, Xenobiotica 5, 197–203 (1975).

    Article  PubMed  CAS  Google Scholar 

  29. J. E. Tomaszewski, D. M. Jerina, and J. W. Daly, Metabolism of aromatic substrates to phenols by animal mono-oxygenases: Evidence for a direct oxidative pathway not involving arene oxide intermediates, Biochemistry 14, 2024–2031 (1975).

    Article  PubMed  CAS  Google Scholar 

  30. H. G. Selander, D. M. Jerina, and J. W. Daly, Metabolism of chlorobenzene with hepatic microsomes and solubilized cytochrome P450 systems, Arch. Biochem. Biophys. 168, 309–321 (1975).

    Article  CAS  Google Scholar 

  31. J. W. Daly, D. M. Jerina, and B. Witkop, Arene oxides and the NIH shift: The metabolism, toxicity and carcinogenicity of aromatic compounds, Experientia 28, 1129–1149(1972).

    Article  PubMed  CAS  Google Scholar 

  32. D. M. Jerina and J. W. Daly, Arene oxides: A new aspect of drug metabolism, Science 185, 573–582 (1974).

    Article  PubMed  CAS  Google Scholar 

  33. P. Sims and P. L. Grover, Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis, Adv. Cancer Res. 20, 165–274 (1974).

    Article  CAS  Google Scholar 

  34. T. Sato, T. Fukuyama, T. Suzuki, and Y. Uoshikawa, 1,2,-Dihydro-1,2-dihydroxybenzene and several other substances in the metabolism of benzene, J. Biochem. (Tokyo) 53, 23–27 (1963).

    CAS  Google Scholar 

  35. B. Spencer and R. T. Williams, Studies in detoxication. 33. The metabolism of halobenzenes. A comparison of the glucuronic acid, ethereal sulphate and mercapturic acid conjugates of chloro-, bromo-and iodobenzenes of the o-, m-, and p-chlorophenols: Biosynthesis of o-, m-and p-chlorophenyglucuronides, Biochem. J. 47, 279–284 (1950).

    CAS  Google Scholar 

  36. J. R. Lindsay-Smith and B. A. J. Shaw, Mechanisms of mammalian hydroxylation: Some novel metabolites of chlorobenzene, Xenobiotica 2, 215–226 (1972).

    Article  CAS  Google Scholar 

  37. W. M. Azouz, D. V. Parke, and R. T. Williams, Studies in detoxication. 51. The determination of catechols in urine, and the formation of catechols in rabbits receiving halogenobenzenes and other compounds. Dihydroxylation in vivo, Biochem. J. 55, 146–151 (1953).

    CAS  Google Scholar 

  38. N. Zampaglione, D. J. Jollow, J. R. Mitchell, B. Stripp, M. Hamrick, and J. R. Gillette, Role of detoxifying enzymes in bromobenzene-induced liver necrosis, J. Pharmacol. Exp. Ther. 187, 218–227 (1973).

    PubMed  CAS  Google Scholar 

  39. W. M. Azouz, D. V. Parke, and R. T. Williams, Studies in detoxication. 62. The metabolism of halogenobenzenes, ortho-and para-dichlorobenzene, Biochem. J. 59, 410–415 (1955).

    CAS  Google Scholar 

  40. D. V. Parke and R. T. Williams, Studies in detoxication. 63. The metabolism of halgenobenzenes (a). Meta-dichlorobenzene (b). Further observations on the metabolism of chlorobenzene, Biochem. J. 59, 415–422 (1955).

    CAS  Google Scholar 

  41. W. R. Jondorf, D. V. Parke, and R. T. Williams, Studies in detoxication. 66. The metabolism of halogenobenzenes, 1:2:3-, 1:2:4-, and 1:3:5-trichlorobenzenes, Biochem. J. 61, 512–521 (1951).

    Google Scholar 

  42. D. M. Jerina, J. W. Daly, and B. Witkop, Deuterium migration during the acid-catalyzed dehydration of 6-deutero-5,6-dihydroxy-3-chloro-1,3-cyclohexadiene, A nonenzymatic model for the NIH shift, J. Am. Chem Soc. 89, 5488–5489 (1967).

    Article  CAS  Google Scholar 

  43. F. Oesch, D. M. Jerina, J. W. Daly, and J. Rice, An anomalous prevention of chlorobenzene-induced hepatotoxicity by an inhibitor of epoxide hydrase, Chem.-Biol. Interactions 6, 189–202 (1973).

    CAS  Google Scholar 

  44. H. G. Selander, D. M. Jerina, D. E. Piccolo, and G. A. Berchtold, Synthesis of 3- and 4-chlorobenzene oxides: Unexpected trapping results during metabolism of 14 C-chlorobenzene by hepatic microsomes, J. Am. Chem. Soc. 97, 4428–4430 (1975).

    Article  PubMed  CAS  Google Scholar 

  45. H. D. West, J. R. Lawson, I. H. Miller, and G. R. Mathura, The fate of diphenyl in the rat, Arch. Biochem. Biophys. 60, 14–20 (1965).

    Article  Google Scholar 

  46. D. J. Harvey, L. Glazener, C. Stratton, J. Nowlin, R. M. Hill, and M. G. Horning, Detection of epoxides of allyl-substituted barbiturates in rat urine, Res. Commun. Chem. Pathol Pharmacol. 3, 557–565 (1972).

    PubMed  CAS  Google Scholar 

  47. M. G. Horning, C. Stratton, A. Wilson, E. C. Horning, and R. M. Hill, Detection of 5-(3,4-dihydroxy-l,5-cyclohexadienyl-l-yl)-5-phenylhydantoin as a major metabolite of 5,5-diphenylhydantoin (Dilantin) in the newborn human, Anal. Lett. 4, 537–545 (1971).

    CAS  Google Scholar 

  48. A. Karim, G. Garden, and W. Trager, Biotransformation of diphenoxylate in rat and dog, J. Pharm. Exp. Ther. 177, 546–555 (1971).

    CAS  Google Scholar 

  49. W. G. Stillwell, M. Stafford, and M. G. Horning, Metabolism of glutethimide (Doriden) by the epoxide-diol pathway in the rat and guinea pig, Res. Commun. Chem Pathol. Pharmacol. 6, 579–590 (1973).

    PubMed  CAS  Google Scholar 

  50. M. G. Horning, C. Butler, D. J. Harvey, R. M. Hill, and T. E. Zion, Metabolism of N,2-dimethyl-2-phenylsuccinimide (Methsuximide) by the epoxide-diol pathway in rat, guinea pig, and human, Res. Commun. Chem. Pathol Pharmacol. 6, 565–578 (1973).

    PubMed  CAS  Google Scholar 

  51. J. Booth and E. Boyland, Metabolism of polycyclic compounds. 5. Formation of 1:2-dihydroxy-1:2-dihydronaphthalenes, Biochem. J. 44, 361–365 (1949).

    CAS  Google Scholar 

  52. E. Boyland and P. Sims, Metabolism of polycyclic compounds. 12. An acid-labile precursor of 1-naphthylmercapturic acid and naphthol: an N-acetyl-S-(1,2-dihydrohydroxynaphthyl)-L-cysteine, Biochem. J. 68, 440–447 (1958).

    CAS  Google Scholar 

  53. H. H. Cornish and W. D. Block, Metabolism of chlorinated naphthalenes, J. Biol. Chem. 231, 583–588 (1958).

    PubMed  CAS  Google Scholar 

  54. J. B. Knaak, Biological and nonbiological modifications of carbamates, Bull. WHO 44, 121–131 (1971).

    PubMed  CAS  Google Scholar 

  55. J. R. Bend, G. M. Holder, E. Protos, and A. J. Ryan, Water soluble metabolites of carbaryl (1-naphthyl N-methylcarbamate) in mouse liver preparations and in the rat, Aust. J. Biol. Sci. 24, 535–546 (1971).

    PubMed  CAS  Google Scholar 

  56. P. Sims, Metabolism of polycyclic compounds. 25. The metabolism of anthracene and some related compounds in rats, Biochem. J. 92, 621–631 (1964).

    CAS  Google Scholar 

  57. E. Boyland and P. Sims, Metabolism of polycyclic compounds. 20. The metabolism of phenanthrene in rabbits and rats: mercapturic acids and related compounds, Biochem. J. 84, 564–570 (1962).

    CAS  Google Scholar 

  58. E. Boyland and P. Sims, Metabolism of polycyclic compounds. 21. The metabolism of phenanthrene in rabbits and rats: dihydrodihydroxy compounds and related glucosiduronic acids, Biochem. J. 84, 571–582 (1962).

    CAS  Google Scholar 

  59. E. Boyland and P. Sims, The metabolism of 9,10-epoxy-9,10-dihydrophenanthrene in rats, Biochem. J. 95, 778–792 (1965).

    Google Scholar 

  60. E. Boyland and P. Sims, Metabolism of polycyclic compounds. 23. The metabolism of pyrene in rats and rabbits, Biochem. J. 90, 391–398 (1964).

    CAS  Google Scholar 

  61. E. Boyland and P. Sims, Metabolism of polycyclic compounds. 24. The metabolism of benz[a] anthracene, Biochem. J. 91, 493–506 (1964).

    CAS  Google Scholar 

  62. A. M. Elmasri, J. N. Smith, and R. T. Williams, Studies in detoxication. 73. The metabolism of alkylbenzenes: phenylacetylene and phenylethylene (styrene), Biochem. J. 68, 199–204 (1958).

    CAS  Google Scholar 

  63. N. Ohtsuji and M. Ikeda, The metabolism of styrene in the rat and the stimulatory effect of phenobarbital, Toxicol. Appl. Pharmacol. 18, 321–328 (1971).

    Article  CAS  Google Scholar 

  64. S. P. James and D. A. White, The metabolism of phenethyl bromide, styrene and styrene oxide in the rabbit and rat, Biochem. J. 104, 914–921 (1967).

    PubMed  CAS  Google Scholar 

  65. D. J. Harvey, L. Glazener, C. Stratton, D. B. Johnson, R. M. Hill, E. C. Horning, and M. G. Horning, Detection of epoxides of allyl-substituted barbiturates in rat urine, Res. Commun. Chem. Pathol. Pharmacol. 4, 247–260 (1972).

    PubMed  CAS  Google Scholar 

  66. M. Stafford, G. Kellerman, R. N. Stillwell, and M. G. Horning, Metabolism of antipyrine by the epoxide-diol pathway in the rat, guinea pig and human, Res. Commun. Chem. Pathol. Pharmacol 8, 593–606 (1974).

    PubMed  CAS  Google Scholar 

  67. K. M. Baker, J. Csetenyi, A. Frigerio, P. L. Morselli, F. Parravicini, and G. Pifferi, 10,11-Dihydro-10,11-dihydroxy-5Hdibenz[b,f] acepine-5-carboxamide, a metabolite of carbamazepine isolated from human and rat urine, J. Med. Chem. 16, 703–705 (1973).

    Article  PubMed  CAS  Google Scholar 

  68. H. B. Hucker, A. J. Balletto, J. Dernetriades, B. H. Arison, and A. G. Zacchei, Epoxide metabolites of protriptyline in rat urine, Drug Metab. Dispos. 3, 80–84 (1975).

    CAS  Google Scholar 

  69. K. L. Hintze, J. S. Wold, and L. J. Fischer, Disposition of cyproheptadine in rats, mice and humans and identification of a stable epoxide metabolite, Drug Metab. Dispos. 3, 1–9 (1975).

    CAS  Google Scholar 

  70. W. G. Stillwell, M. J. Carman, and M. G. Horning, The metabolism of safrole and 2’,3-epoxysafrole in the rat and guinea pig, Drug Metab. Dispos. 2, 489–498 (1974).

    CAS  Google Scholar 

  71. D. H. Swenson, E. C. Miller, and J. A. Miller, Aflatoxin B, -2,3-oxide: Evidence for its formation in rat liver in vivo and by human liver microsomes in vitro, Biochem. Biophys. Res. Commun. 60, 1036–1043 (1974).

    Article  CAS  Google Scholar 

  72. J. T. Matschiner, R. G. Bell, J. M. Amelotti, and T. F. Knauer, Isolation and characterization of a new metabolite of phylloquinone in the rat, Biochim. Biophys. Acta 201, 299–315 (1970).

    Google Scholar 

  73. E. Boyland and D. Williams, An enzyme catalyzing the conjugation of epoxides with glutathione, Biochem. J. 94, 190–197 (1965).

    PubMed  CAS  Google Scholar 

  74. T. Hayakawa, R. A. Lemahieu, and S. Udenfriend, Studies on glutathione-S-arene oxide transferase: A sensitive assay and partial purification of the enzyme from sheep liver, Arch. Biochem. Biophys. 162, 223–230 (1974).

    Article  CAS  Google Scholar 

  75. T. Hayakawa, S. Udenfriend, H. Yagi, and D. M. Jerina, Substrates and inhibitors of hepatic glutathione-S-epoxide transferase, Arch. Biochem. Biophys. 170, 438–451 (1975).

    Article  CAS  Google Scholar 

  76. M. O. James, J. R. Fouts, and J. R. Bend, Hepatic and extrahepatic metabolism in vitro, of an epoxide (8-’4 C-styrene oxide) in the rabbit, Biochem. Pharmacol. 25, 187–193(1976).

    CAS  Google Scholar 

  77. J. Marniemi and M. G. Parkki, Radiochemical assay of glutathione S-epoxide transferase and its enhancement by phenobarbital in rat liver in vitro, Biochem. Pharmacol. 74, 1569–1572 (1975).

    Google Scholar 

  78. N. Nemoto, H. V. Gelboin, W. H. Habig, J. N. Kettley, and W. B. Jakoby, K-region benzo [a] pyrene 4,5-oxide is conjugated by homogeneous glutathione S-transferase, Nature (London) 255, 512 (1975).

    Article  CAS  Google Scholar 

  79. J. R. Bend, Z. Ben-Zvi, J. Van Anda, P. Dansette, and D. M. Jerina, Hepatic and extrahepatic glutathione S-transferase activity toward several arene oxides and epoxides in the rat, in: Polynuclear Aromatic Hydrocarbons (R. Fruedenthal and P. W. Jones, eds.), pp. 63–79, Raven Press, New York (1976).

    Google Scholar 

  80. D. M. Reuben and T. C. Bruice, Relative nucleophilicity of thiols and glutathione towards benzene oxide, J. Chem. Soc. (D) Chem. Commun. 113–114 (1974).

    Google Scholar 

  81. F. Oesch, N. Kaubisch, D. M. Jerina, and J. W. Daly, Hepatic epoxide hydrase: Structure—activity relationships for substrates and inhibitors, Biochemistry 10, 4858–4866 (1971).

    Article  PubMed  CAS  Google Scholar 

  82. D. M. Jerina, P. M. Dansette, A. Y. H. Lu, and W. Levin, Hepatic microsomal epoxide hydrase: A sensitive radiometric assay for hydration of arene oxides of carcinogenic aromatic hydrocarbons, Mol. PharmacoL.

    Google Scholar 

  83. A. H. Conney, A. W. Wood, W. Levin, A. Y. H. Lu, R. L. Chang, P. G. Wislocki, R. L. Goode, G. M. Holder, P. M. Dansette, H. Yagi, and D. M. Jerina, Metabolism and biological activity of benzo [a] pyrene and its metabolic products, Chap. 37.

    Google Scholar 

  84. A. Meister, Glutathione: Metabolism and function via the y-glutamyl cycle, Life Sci. 15, 177–190 (1974).

    Article  PubMed  CAS  Google Scholar 

  85. V. H. Cohn and J. Lyle, A fluorimetric assay for glutathione, Anal. Biochem. 14, 434–440 (1966).

    CAS  Google Scholar 

  86. Z. Ben-Zvi, M. O. James, and J. R. Bend, unpublished results.

    Google Scholar 

  87. P. L. Grover and P. Sims, Conjugations with glutathione: Distribution of glutathione S-aryltransferase in vertebrate species, Biochem. J. 90, 603–606 (1964).

    PubMed  CAS  Google Scholar 

  88. G. Clifton, N. Kaplowitz, J. D. Wallin, and J. Kuhlenkamp, Drug induction and sex differences of renal glutathione S-transferases in the rat. Biochem. J. 150, 259–262 (1975).

    PubMed  CAS  Google Scholar 

  89. C. D. Klassen and G. L. Plaa, Studies on the mechanism of phenobarbital-enhanced sulfobromophalein disappearance, J. Pharmacol. Exp. Ther. 161, 361–366 (1968).

    Google Scholar 

  90. F. J. Darby and R. K. Grundy, Glutathione S-aryltransferase: The effect of treating male and female rats with phenobarbitone on the apparent kinetic paramecers for the conjugation of 1,2-dichloro-4-nitrobenzene and 1-chloro-2,4-dinitrobenzene with glutathione, Biochem. J. 128, 175–177 (1975).

    Google Scholar 

  91. N. Kaplowitz, J. Kuhlenkamp, and G. Clifton, Drug induction of hepatic glutathione S-transferases in male and female rats, Biochem. J. 146, 351–356 (1975).

    CAS  Google Scholar 

  92. J. R. Bend, M. O. James, T. R. Devereux, and J. R. Fouts, Toxication—detoxication systems in hepatic and extrahepatic tissues in the perinatal period, in: Basic and Therapeutic Aspects of Perinatal Pharmacology (P. L. Morselli, S. Garattini, and F. Sereni, eds.), pp. 229–243, Raven Press, New York (1975).

    Google Scholar 

  93. J. R. Bend, M. O. James, T. R. Devereux, and J. R. Fouts, Toxication—detoxication systems in hepatic and extrahepatic tissues in the perinatal period, in: Basic and Therapeutic Aspects of Perinatal Pharmacology (P. L. Morselli, S. Garattini, and F. Sereni, eds.), pp. 229–243, Raven Press, New York (1975).

    Google Scholar 

  94. B. R. Smith, Z. Ben-Zvi, F. C. P. Law, and J. R. Bend, unpublished results.

    Google Scholar 

  95. F. C. P. Law, T. E. Eling, J. R. Bend, and J. R. Fouts, Metabolism of xenobiotics by the isolated perfused lung: Comparison with in vitro incubations, Drug Metab. Dispos. 2, 433–442 (1974).

    CAS  Google Scholar 

  96. P. Sims, Polycyclic hydrocarbon epoxides as active metabolic intermediates, Chap. 39.

    Google Scholar 

  97. P. Brookes, Role of covalent binding in carcinogenicity, Chap. 54, this volume.

    Google Scholar 

  98. D. W. Nerbert, A. R. Boobis, H. Yagi, D. M. Jerina, and R. E. Kouri, Genetic differences in benzo[a] pyrene carcinogenic index in vivo and in mouse cytochrome P, 450-mediated benzo [a] pyrene metabolite binding to DNA in vitro, Chap. 12, this volume.

    Google Scholar 

  99. J. A. Miller and E. C. Miller, The concept of reactive electrophilic metabolites in chemical carcinogenesis: Recent results with aromatic amines, safrole, and aflatonin B1, Chap. 2.

    Google Scholar 

  100. J. R. Gillette, Kinetics of reactive metabolites and covalent binding in vivo and in vitro, Chap. 3.

    Google Scholar 

  101. J. R. Mitchell, S. D. Nelson, W. R. Snodgrass, and J. A. Timbrell, Metabolic activation of hydrazines to highly reactive hepatotoxic intermediates, Chap. 27.

    Google Scholar 

  102. D. J. Jollow and C. Smith, Biochemical aspects of toxic metabolites: Formation, detoxication, and covalent binding, Chap. 4.

    Google Scholar 

  103. K. C. Chen and J. Tang, Amino acid sequence around the epoxide-reactive residues in pepsin, J. Biol. Chem. 247, 2566–2574 (1972).

    PubMed  CAS  Google Scholar 

  104. A. Quaroni, E. Gershon, and G. Semanza, Affinity labeling of the active sites in the sucrase—isomaltase complex from small intestine, J. Biol. Chem. 249, 6424–6433 (1974), and references therein.

    PubMed  CAS  Google Scholar 

  105. E. T. Bucovax, J. C. Morrison, H. L. James, C. F. Dais, and J. L. Wood, Reaction of polycyclic hydrocarbon—cysteine conjugates with the aminoacyl-RNA synthetase system, Cancer Res. 30, 155–161 (1970).

    Google Scholar 

  106. S. V. Molinary and J. L. Wood, Phenanthrene bound to a protein by biosynthesis, Biochem. Biophys. Res. Commun. 43, 899–904 (1971).

    Article  CAS  Google Scholar 

  107. J. Frendo and J. L. Wood, Incorporation of S-(9-hydroxy-9,10dihydro-10-phenanthryl)-L-cysteine into rabbit hemoglobin, Proc. Soc. Exp. Biol. Med. 139, 173–175 (1972).

    PubMed  CAS  Google Scholar 

  108. D. M. Jerina, H. Yagi, and J. W. Daly, Arene oxides-oxepins, Heterocycles 1, 267–326 (1973).

    Article  CAS  Google Scholar 

  109. A. M. Jeffrey, H. J. C. Yeh, D. M. Jerina, R. M. DeMarinis, D. H. Foster, D. E. Piccolo, and G. A. Berchtold, Stereochemical course in reactions between nucleophiles and arene oxides, J. Am. Chem. Soc. 96, 6929–6937 (1974).

    Article  CAS  Google Scholar 

  110. P. Y. Bruice, T. C. Bruice, P. M. Dansette, H. G. Selander, H. Yagi, and D. M. Jerina, A comparison of the mechanism of solvolysis and rearrangement of K-region vs. non-Kregion arene oxides of phenanthrene. Comparative solvolytic rate constants of K-region and non-K-region arene oxides, J. Am. Chem. Soc. 98, 2965–2973(1976).

    Article  CAS  Google Scholar 

  111. P. Y. Bruice, T. C. Bruice, H. Yagi, and D. M. Jerina, Nucleophilic displacements on the arene oxides of phenanthrene, J. Am. Chem. Soc. 98, 2973–2981 (1976).

    Article  CAS  Google Scholar 

  112. A. M. Jeffrey and D. M. Jerina, Novel rearrangements during dehydration of arene oxide adducts, J. Am. Chem. Soc. 97, 4427–4428 (1975).

    Article  Google Scholar 

  113. D. M. Jerina, Products, specificity, and assay of glutathione S-epoxide transferase, in: Glutathione, Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 267–279, Raven Press, New York (1976).

    Google Scholar 

  114. W. B. Jakoby and T. A. Fjellstedt, Epoxidases, in: The Enzymes, 3rd ed., Vol. 7 (P. D. Boyer, ed.), pp. 199–212, Academic Press, New York (1972).

    Google Scholar 

  115. B. Ketterer and L. Christodoulides, Two specific azodye-carcinogen-binding proteins of the rat liver: The identity of the amino acid residues which bind to the azodye, Chem.-Biol. Interactions 1, 173–183 (1969/1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Jerina, D.M., Bend, J.R. (1977). Glutathione S-Transferases. In: Jollow, D.J., et al. Biological Reactive Intermediates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4124-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4124-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4126-0

  • Online ISBN: 978-1-4613-4124-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics