Advertisement

Glutathione S-Transferases

  • Donald M. Jerina
  • John R. Bend

Abstract

Any symposium which deals with the metabolic formation and inactivation of reactive metabolites must necessarily consider the prominent role played by glutathione (GSH) and the glutathione transferases since this simple tripeptide (Fig. 1) and the enzymes which employ GSH as a cosubstrate represent a very important factor in the protection of cellular constituents from the adverse effects of reactive chemicals. Thiols such as GSH are highly reactive as nucleophiles. In addition, thiols readily give up hydrogen atoms on reaction with radicals. Thus the importance of GSH in its spontaneous reactions with electrophiles and free radicals within the cell cannot be overemphasized. The remarkably high concentration of 10−4 to 10−2 M GSH (1) in aerobic cells cannot be serendipitous.

Keywords

Covalent Binding Glutathione Transferase Styrene Oxide Extrahepatic Tissue Mercapturic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Kosower, Chemical properties of glutathione, in: Glutathione, Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 1–15, Raven Press, New York (1976).Google Scholar
  2. 2.
    L. F. Chasseaud, Conjugation with glutathione and mercapturic acid excretion, in: Glutathione, Metabolism and Function ( I. M. Arias and W. B. Jakoby, eds.), pp. 77–114, Raven Press, New York (1976).Google Scholar
  3. 3.
    L. F. Chasseaud, The nature and distribution of enzymes catalyzing the conjugation of glutathione with foreign compounds, DrugMetab. Rev. 2, 185–220 (1973).Google Scholar
  4. 4.
    J. L. Wood, Biochemistry of mercapturic acid formation, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. II (W. H. Fishman, ed.), pp. 261–299, Academic Press, New York (1970).Google Scholar
  5. 5.
    E. Boyland and L. F. Chasseaud, The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis, Adv. Enzymol. 32, 173–219 (1969).Google Scholar
  6. 6.
    J. B. Hendrickson, D. J. Cram, and G. S. Hammond, Organic Chemistry, McGraw-Hill, New York (1970).Google Scholar
  7. 7.
    W. H. Habig, J. H. Keen, and W. Jakoby, Glutathione S-transferase in the formation of cyanide from organic thiocyanates and as an organic nitrate reductase, Biochem. Biophys. Res. Commun. 64, 501–506 (1975).CrossRefGoogle Scholar
  8. 8.
    T. A. Fjellstedt, R. H. Allen, B. K. Duncan, and W. Jakoby, Enzymatic conjugation of epoxides with glutathione, J. Biol. Chem. 248, 3702–3707 (1973).PubMedGoogle Scholar
  9. 9.
    W. H. Habig, M. J. Pabst, and W. B. Jakoby, Glutathione S-transferases: The first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249, 7130–7139 (1974).PubMedGoogle Scholar
  10. 10.
    W. B. Jakoby, W. H. Habig, J. H. Keen, J. N. Ketley, and M. J. Pabst. Glutathione S-transferases: Catalytic aspects, in: Glutathione, Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 189–211, Raven Press, New York (1976).Google Scholar
  11. 11.
    K. Kamisaka, W. H. Habig, J. N. Ketley, L. M. Arias, and W. B. Jakoby, Multiple forms of human glutathione S-transferase and their affinity for bilirubin, Eur. J. Biochem. 60, 153–161 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Ketterer, P. Ross-Mansell, and J. K. Whitehead, The isolation of a carcinogen-binding protein from livers of rats given 4-dimethylaminoazobenzene, Biochem. J. 103, 316–324 (1967).PubMedGoogle Scholar
  13. 13.
    G. Litwak, B. Ketterer, and I. M. Arias, Ligandin: A hepatic protein which binds steroids, bilirubin, carcinogens, and a number of exogeneous organic anions, Nature (London) 234, 466–467 (1971).CrossRefGoogle Scholar
  14. 14.
    J. A. Meuwissen, B. Ketterer, and B. B. Mertens, Binding constants for haem and bilirubin to purified ligandins, Digestion 6, 293 (1972).Google Scholar
  15. 15.
    A. J. Levi, A. Gatamaitan, and I. M. Arias, The role of two hepatic cytoplasmic proteins (Y and Z) in the transfer of sulfobromophthalein (BSP) and bilirubin from plasma into liver, J. Clin. Invest. 48, 2156–2167 (1969).PubMedCrossRefGoogle Scholar
  16. 16.
    K. S. Morey and G. Litwak, Purification and properties of cortisol metabolite binding proteins of rat liver cytosol, Biochemistry 8, 4813–4821 (1969).PubMedCrossRefGoogle Scholar
  17. 17.
    W. H. Habig, M. J. Pabst, G. Fleischner, Z. Gatmaitan, I. M. Arias, and W. B. Jakoby, The identity of glutathione S-transferase B with ligandin, a major binding protein of liver, Proc. Natl. Acad. Sci. USA 71, 3879–3882 (1974).PubMedCrossRefGoogle Scholar
  18. 18.
    I. M. Arias, G. Fleischner, R. Kirsch, S. Mishkin, and Z. Gatmaitan, On the structure, regulation, and function of ligandin, in: Glutathione, Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 175–188, Raven Press, New York (1976).Google Scholar
  19. 19.
    M. J. Pabst, W. H. Habig, and W. B. Jakoby, Glutathione S-transferase A. A.novel kinetic mechanism in which the major reaction pathway depends on substrate concentration, J. Biol. Chem. 249, 7140–7148 (1974).Google Scholar
  20. 20.
    C. W. Abel and C. Heidelberger, The interaction of carcinogenic hydrocarbons with tissue constituents. VIII. Binding of tritium-labeled hydrocarbons to the soluble proteins of mouse skin, Cancer Res. 22, 931–946 (1962).Google Scholar
  21. 21.
    A. M. Sarrif and C. Heidelberger, On the interaction of chemical carcinogens with soluble proteins of target tissues and in cell culture in: Glutathione, Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 317–338, Raven Press, New York (1976).Google Scholar
  22. 22.
    N. Kaubisch, D. M. Jerina, and J. W. Daly, Arene oxides as intermediates in the oxidative metabolism of aromatic compounds: Isomerization of methyl substituted arene oxides, Biochemistry 11, 3080–3088 (1972).PubMedCrossRefGoogle Scholar
  23. 23.
    B. J. Auret, D. R. Boyd, P. M. Robinson, C. Watson, J. W. Daly, and D. M. Jerina, The NIH shift during hydroxylation of aromatic substrates by fungi, J. Chem. Soc. (D) Chem. Commun. 1585–1587 (1971).Google Scholar
  24. 24.
    P. K. Ayengan, O. Hayaisha, M. Nakajima, and J. Tomida, Enzymatic aromatization of 3,5-cyclohexadiene-1,2-diol, Biochim. Biophys. Acta 33, 111–119 (1959).CrossRefGoogle Scholar
  25. 25.
    D. M. Jerina, H. Ziffer, and J. W. Daly, The role of the arene oxide—oxepin system in the metabolism of aromatic substrates. IV. Stereochemical considerations of dihydrodiol formation and dehydrogenation, J. Am. Chem. Soc. 92, 1056–1061 (1970).CrossRefGoogle Scholar
  26. 26.
    A. M. Jeffrey, H. J. C. Yeh, D. M. Jerina, T. R. Patel, J. F. Davey, and D. T. Gibson, Initial reactions in the oxidation of naphthalene by Pseudomonas putida, Biochemistry 14, 575–584 (1975).PubMedCrossRefGoogle Scholar
  27. 27.
    P. J. Murphy, J. R. Bernstein, and R. E. McMahon, The formation of catechols by consecutive hydroxylations: A study of the microsomal hydroxylation of butarnoxane,Mol. Pharmacol. 10, 634–639 (1974).Google Scholar
  28. 28.
    J. Booth, A. Hewer, G. R. Keysell, and P. Sims, Enzymic reduction of aromatic hydrocarbon epoxides by the microsomal fraction of rat liver, Xenobiotica 5, 197–203 (1975).PubMedCrossRefGoogle Scholar
  29. 29.
    J. E. Tomaszewski, D. M. Jerina, and J. W. Daly, Metabolism of aromatic substrates to phenols by animal mono-oxygenases: Evidence for a direct oxidative pathway not involving arene oxide intermediates, Biochemistry 14, 2024–2031 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    H. G. Selander, D. M. Jerina, and J. W. Daly, Metabolism of chlorobenzene with hepatic microsomes and solubilized cytochrome P450 systems, Arch. Biochem. Biophys. 168, 309–321 (1975).CrossRefGoogle Scholar
  31. 31.
    J. W. Daly, D. M. Jerina, and B. Witkop, Arene oxides and the NIH shift: The metabolism, toxicity and carcinogenicity of aromatic compounds, Experientia 28, 1129–1149(1972).PubMedCrossRefGoogle Scholar
  32. 32.
    D. M. Jerina and J. W. Daly, Arene oxides: A new aspect of drug metabolism, Science 185, 573–582 (1974).PubMedCrossRefGoogle Scholar
  33. 33.
    P. Sims and P. L. Grover, Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis, Adv. Cancer Res. 20, 165–274 (1974).CrossRefGoogle Scholar
  34. 34.
    T. Sato, T. Fukuyama, T. Suzuki, and Y. Uoshikawa, 1,2,-Dihydro-1,2-dihydroxybenzene and several other substances in the metabolism of benzene, J. Biochem. (Tokyo) 53, 23–27 (1963).Google Scholar
  35. 35.
    B. Spencer and R. T. Williams, Studies in detoxication. 33. The metabolism of halobenzenes. A comparison of the glucuronic acid, ethereal sulphate and mercapturic acid conjugates of chloro-, bromo-and iodobenzenes of the o-, m-, and p-chlorophenols: Biosynthesis of o-, m-and p-chlorophenyglucuronides, Biochem. J. 47, 279–284 (1950).Google Scholar
  36. 36.
    J. R. Lindsay-Smith and B. A. J. Shaw, Mechanisms of mammalian hydroxylation: Some novel metabolites of chlorobenzene, Xenobiotica 2, 215–226 (1972).CrossRefGoogle Scholar
  37. 37.
    W. M. Azouz, D. V. Parke, and R. T. Williams, Studies in detoxication. 51. The determination of catechols in urine, and the formation of catechols in rabbits receiving halogenobenzenes and other compounds. Dihydroxylation in vivo, Biochem. J. 55, 146–151 (1953).Google Scholar
  38. 38.
    N. Zampaglione, D. J. Jollow, J. R. Mitchell, B. Stripp, M. Hamrick, and J. R. Gillette, Role of detoxifying enzymes in bromobenzene-induced liver necrosis, J. Pharmacol. Exp. Ther. 187, 218–227 (1973).PubMedGoogle Scholar
  39. 39.
    W. M. Azouz, D. V. Parke, and R. T. Williams, Studies in detoxication. 62. The metabolism of halogenobenzenes, ortho-and para-dichlorobenzene, Biochem. J. 59, 410–415 (1955).Google Scholar
  40. 40.
    D. V. Parke and R. T. Williams, Studies in detoxication. 63. The metabolism of halgenobenzenes (a). Meta-dichlorobenzene (b). Further observations on the metabolism of chlorobenzene, Biochem. J. 59, 415–422 (1955).Google Scholar
  41. 41.
    W. R. Jondorf, D. V. Parke, and R. T. Williams, Studies in detoxication. 66. The metabolism of halogenobenzenes, 1:2:3-, 1:2:4-, and 1:3:5-trichlorobenzenes, Biochem. J. 61, 512–521 (1951).Google Scholar
  42. 42.
    D. M. Jerina, J. W. Daly, and B. Witkop, Deuterium migration during the acid-catalyzed dehydration of 6-deutero-5,6-dihydroxy-3-chloro-1,3-cyclohexadiene, A nonenzymatic model for the NIH shift, J. Am. Chem Soc. 89, 5488–5489 (1967).CrossRefGoogle Scholar
  43. 43.
    F. Oesch, D. M. Jerina, J. W. Daly, and J. Rice, An anomalous prevention of chlorobenzene-induced hepatotoxicity by an inhibitor of epoxide hydrase, Chem.-Biol. Interactions 6, 189–202 (1973).Google Scholar
  44. 44.
    H. G. Selander, D. M. Jerina, D. E. Piccolo, and G. A. Berchtold, Synthesis of 3- and 4-chlorobenzene oxides: Unexpected trapping results during metabolism of 14 C-chlorobenzene by hepatic microsomes, J. Am. Chem. Soc. 97, 4428–4430 (1975).PubMedCrossRefGoogle Scholar
  45. 45.
    H. D. West, J. R. Lawson, I. H. Miller, and G. R. Mathura, The fate of diphenyl in the rat, Arch. Biochem. Biophys. 60, 14–20 (1965).CrossRefGoogle Scholar
  46. 46.
    D. J. Harvey, L. Glazener, C. Stratton, J. Nowlin, R. M. Hill, and M. G. Horning, Detection of epoxides of allyl-substituted barbiturates in rat urine, Res. Commun. Chem. Pathol Pharmacol. 3, 557–565 (1972).PubMedGoogle Scholar
  47. 47.
    M. G. Horning, C. Stratton, A. Wilson, E. C. Horning, and R. M. Hill, Detection of 5-(3,4-dihydroxy-l,5-cyclohexadienyl-l-yl)-5-phenylhydantoin as a major metabolite of 5,5-diphenylhydantoin (Dilantin) in the newborn human, Anal. Lett. 4, 537–545 (1971).Google Scholar
  48. 48.
    A. Karim, G. Garden, and W. Trager, Biotransformation of diphenoxylate in rat and dog, J. Pharm. Exp. Ther. 177, 546–555 (1971).Google Scholar
  49. 49.
    W. G. Stillwell, M. Stafford, and M. G. Horning, Metabolism of glutethimide (Doriden) by the epoxide-diol pathway in the rat and guinea pig, Res. Commun. Chem Pathol. Pharmacol. 6, 579–590 (1973).PubMedGoogle Scholar
  50. 50.
    M. G. Horning, C. Butler, D. J. Harvey, R. M. Hill, and T. E. Zion, Metabolism of N,2-dimethyl-2-phenylsuccinimide (Methsuximide) by the epoxide-diol pathway in rat, guinea pig, and human, Res. Commun. Chem. Pathol Pharmacol. 6, 565–578 (1973).PubMedGoogle Scholar
  51. 51.
    J. Booth and E. Boyland, Metabolism of polycyclic compounds. 5. Formation of 1:2-dihydroxy-1:2-dihydronaphthalenes, Biochem. J. 44, 361–365 (1949).Google Scholar
  52. 52.
    E. Boyland and P. Sims, Metabolism of polycyclic compounds. 12. An acid-labile precursor of 1-naphthylmercapturic acid and naphthol: an N-acetyl-S-(1,2-dihydrohydroxynaphthyl)-L-cysteine, Biochem. J. 68, 440–447 (1958).Google Scholar
  53. 53.
    H. H. Cornish and W. D. Block, Metabolism of chlorinated naphthalenes, J. Biol. Chem. 231, 583–588 (1958).PubMedGoogle Scholar
  54. 54.
    J. B. Knaak, Biological and nonbiological modifications of carbamates, Bull. WHO 44, 121–131 (1971).PubMedGoogle Scholar
  55. 55.
    J. R. Bend, G. M. Holder, E. Protos, and A. J. Ryan, Water soluble metabolites of carbaryl (1-naphthyl N-methylcarbamate) in mouse liver preparations and in the rat, Aust. J. Biol. Sci. 24, 535–546 (1971).PubMedGoogle Scholar
  56. 56.
    P. Sims, Metabolism of polycyclic compounds. 25. The metabolism of anthracene and some related compounds in rats, Biochem. J. 92, 621–631 (1964).Google Scholar
  57. 57.
    E. Boyland and P. Sims, Metabolism of polycyclic compounds. 20. The metabolism of phenanthrene in rabbits and rats: mercapturic acids and related compounds, Biochem. J. 84, 564–570 (1962).Google Scholar
  58. 58.
    E. Boyland and P. Sims, Metabolism of polycyclic compounds. 21. The metabolism of phenanthrene in rabbits and rats: dihydrodihydroxy compounds and related glucosiduronic acids, Biochem. J. 84, 571–582 (1962).Google Scholar
  59. 59.
    E. Boyland and P. Sims, The metabolism of 9,10-epoxy-9,10-dihydrophenanthrene in rats, Biochem. J. 95, 778–792 (1965).Google Scholar
  60. 60.
    E. Boyland and P. Sims, Metabolism of polycyclic compounds. 23. The metabolism of pyrene in rats and rabbits, Biochem. J. 90, 391–398 (1964).Google Scholar
  61. 61.
    E. Boyland and P. Sims, Metabolism of polycyclic compounds. 24. The metabolism of benz[a] anthracene, Biochem. J. 91, 493–506 (1964).Google Scholar
  62. 62.
    A. M. Elmasri, J. N. Smith, and R. T. Williams, Studies in detoxication. 73. The metabolism of alkylbenzenes: phenylacetylene and phenylethylene (styrene), Biochem. J. 68, 199–204 (1958).Google Scholar
  63. 63.
    N. Ohtsuji and M. Ikeda, The metabolism of styrene in the rat and the stimulatory effect of phenobarbital, Toxicol. Appl. Pharmacol. 18, 321–328 (1971).CrossRefGoogle Scholar
  64. 64.
    S. P. James and D. A. White, The metabolism of phenethyl bromide, styrene and styrene oxide in the rabbit and rat, Biochem. J. 104, 914–921 (1967).PubMedGoogle Scholar
  65. 65.
    D. J. Harvey, L. Glazener, C. Stratton, D. B. Johnson, R. M. Hill, E. C. Horning, and M. G. Horning, Detection of epoxides of allyl-substituted barbiturates in rat urine, Res. Commun. Chem. Pathol. Pharmacol. 4, 247–260 (1972).PubMedGoogle Scholar
  66. 66.
    M. Stafford, G. Kellerman, R. N. Stillwell, and M. G. Horning, Metabolism of antipyrine by the epoxide-diol pathway in the rat, guinea pig and human, Res. Commun. Chem. Pathol. Pharmacol 8, 593–606 (1974).PubMedGoogle Scholar
  67. 67.
    K. M. Baker, J. Csetenyi, A. Frigerio, P. L. Morselli, F. Parravicini, and G. Pifferi, 10,11-Dihydro-10,11-dihydroxy-5Hdibenz[b,f] acepine-5-carboxamide, a metabolite of carbamazepine isolated from human and rat urine, J. Med. Chem. 16, 703–705 (1973).PubMedCrossRefGoogle Scholar
  68. 68.
    H. B. Hucker, A. J. Balletto, J. Dernetriades, B. H. Arison, and A. G. Zacchei, Epoxide metabolites of protriptyline in rat urine, Drug Metab. Dispos. 3, 80–84 (1975).Google Scholar
  69. 69.
    K. L. Hintze, J. S. Wold, and L. J. Fischer, Disposition of cyproheptadine in rats, mice and humans and identification of a stable epoxide metabolite, Drug Metab. Dispos. 3, 1–9 (1975).Google Scholar
  70. 70.
    W. G. Stillwell, M. J. Carman, and M. G. Horning, The metabolism of safrole and 2’,3-epoxysafrole in the rat and guinea pig, Drug Metab. Dispos. 2, 489–498 (1974).Google Scholar
  71. 71.
    D. H. Swenson, E. C. Miller, and J. A. Miller, Aflatoxin B, -2,3-oxide: Evidence for its formation in rat liver in vivo and by human liver microsomes in vitro, Biochem. Biophys. Res. Commun. 60, 1036–1043 (1974).CrossRefGoogle Scholar
  72. 72.
    J. T. Matschiner, R. G. Bell, J. M. Amelotti, and T. F. Knauer, Isolation and characterization of a new metabolite of phylloquinone in the rat, Biochim. Biophys. Acta 201, 299–315 (1970).Google Scholar
  73. 73.
    E. Boyland and D. Williams, An enzyme catalyzing the conjugation of epoxides with glutathione, Biochem. J. 94, 190–197 (1965).PubMedGoogle Scholar
  74. 74.
    T. Hayakawa, R. A. Lemahieu, and S. Udenfriend, Studies on glutathione-S-arene oxide transferase: A sensitive assay and partial purification of the enzyme from sheep liver, Arch. Biochem. Biophys. 162, 223–230 (1974).CrossRefGoogle Scholar
  75. 75.
    T. Hayakawa, S. Udenfriend, H. Yagi, and D. M. Jerina, Substrates and inhibitors of hepatic glutathione-S-epoxide transferase, Arch. Biochem. Biophys. 170, 438–451 (1975).CrossRefGoogle Scholar
  76. 76.
    M. O. James, J. R. Fouts, and J. R. Bend, Hepatic and extrahepatic metabolism in vitro, of an epoxide (8-’4 C-styrene oxide) in the rabbit, Biochem. Pharmacol. 25, 187–193(1976).Google Scholar
  77. 77.
    J. Marniemi and M. G. Parkki, Radiochemical assay of glutathione S-epoxide transferase and its enhancement by phenobarbital in rat liver in vitro, Biochem. Pharmacol. 74, 1569–1572 (1975).Google Scholar
  78. 78.
    N. Nemoto, H. V. Gelboin, W. H. Habig, J. N. Kettley, and W. B. Jakoby, K-region benzo [a] pyrene 4,5-oxide is conjugated by homogeneous glutathione S-transferase, Nature (London) 255, 512 (1975).CrossRefGoogle Scholar
  79. 79.
    J. R. Bend, Z. Ben-Zvi, J. Van Anda, P. Dansette, and D. M. Jerina, Hepatic and extrahepatic glutathione S-transferase activity toward several arene oxides and epoxides in the rat, in: Polynuclear Aromatic Hydrocarbons (R. Fruedenthal and P. W. Jones, eds.), pp. 63–79, Raven Press, New York (1976).Google Scholar
  80. 80.
    D. M. Reuben and T. C. Bruice, Relative nucleophilicity of thiols and glutathione towards benzene oxide, J. Chem. Soc. (D) Chem. Commun. 113–114 (1974).Google Scholar
  81. 81.
    F. Oesch, N. Kaubisch, D. M. Jerina, and J. W. Daly, Hepatic epoxide hydrase: Structure—activity relationships for substrates and inhibitors, Biochemistry 10, 4858–4866 (1971).PubMedCrossRefGoogle Scholar
  82. 82.
    D. M. Jerina, P. M. Dansette, A. Y. H. Lu, and W. Levin, Hepatic microsomal epoxide hydrase: A sensitive radiometric assay for hydration of arene oxides of carcinogenic aromatic hydrocarbons, Mol. PharmacoL.Google Scholar
  83. 83.
    A. H. Conney, A. W. Wood, W. Levin, A. Y. H. Lu, R. L. Chang, P. G. Wislocki, R. L. Goode, G. M. Holder, P. M. Dansette, H. Yagi, and D. M. Jerina, Metabolism and biological activity of benzo [a] pyrene and its metabolic products, Chap. 37.Google Scholar
  84. 84.
    A. Meister, Glutathione: Metabolism and function via the y-glutamyl cycle, Life Sci. 15, 177–190 (1974).PubMedCrossRefGoogle Scholar
  85. 85.
    V. H. Cohn and J. Lyle, A fluorimetric assay for glutathione, Anal. Biochem. 14, 434–440 (1966).Google Scholar
  86. 86.
    Z. Ben-Zvi, M. O. James, and J. R. Bend, unpublished results.Google Scholar
  87. 87.
    P. L. Grover and P. Sims, Conjugations with glutathione: Distribution of glutathione S-aryltransferase in vertebrate species, Biochem. J. 90, 603–606 (1964).PubMedGoogle Scholar
  88. 88.
    G. Clifton, N. Kaplowitz, J. D. Wallin, and J. Kuhlenkamp, Drug induction and sex differences of renal glutathione S-transferases in the rat. Biochem. J. 150, 259–262 (1975).PubMedGoogle Scholar
  89. 89.
    C. D. Klassen and G. L. Plaa, Studies on the mechanism of phenobarbital-enhanced sulfobromophalein disappearance, J. Pharmacol. Exp. Ther. 161, 361–366 (1968).Google Scholar
  90. 90.
    F. J. Darby and R. K. Grundy, Glutathione S-aryltransferase: The effect of treating male and female rats with phenobarbitone on the apparent kinetic paramecers for the conjugation of 1,2-dichloro-4-nitrobenzene and 1-chloro-2,4-dinitrobenzene with glutathione, Biochem. J. 128, 175–177 (1975).Google Scholar
  91. 91.
    N. Kaplowitz, J. Kuhlenkamp, and G. Clifton, Drug induction of hepatic glutathione S-transferases in male and female rats, Biochem. J. 146, 351–356 (1975).Google Scholar
  92. 92.
    J. R. Bend, M. O. James, T. R. Devereux, and J. R. Fouts, Toxication—detoxication systems in hepatic and extrahepatic tissues in the perinatal period, in: Basic and Therapeutic Aspects of Perinatal Pharmacology (P. L. Morselli, S. Garattini, and F. Sereni, eds.), pp. 229–243, Raven Press, New York (1975).Google Scholar
  93. 92.
    J. R. Bend, M. O. James, T. R. Devereux, and J. R. Fouts, Toxication—detoxication systems in hepatic and extrahepatic tissues in the perinatal period, in: Basic and Therapeutic Aspects of Perinatal Pharmacology (P. L. Morselli, S. Garattini, and F. Sereni, eds.), pp. 229–243, Raven Press, New York (1975).Google Scholar
  94. 94.
    B. R. Smith, Z. Ben-Zvi, F. C. P. Law, and J. R. Bend, unpublished results.Google Scholar
  95. 95.
    F. C. P. Law, T. E. Eling, J. R. Bend, and J. R. Fouts, Metabolism of xenobiotics by the isolated perfused lung: Comparison with in vitro incubations, Drug Metab. Dispos. 2, 433–442 (1974).Google Scholar
  96. 96.
    P. Sims, Polycyclic hydrocarbon epoxides as active metabolic intermediates, Chap. 39.Google Scholar
  97. 97.
    P. Brookes, Role of covalent binding in carcinogenicity, Chap. 54, this volume.Google Scholar
  98. 98.
    D. W. Nerbert, A. R. Boobis, H. Yagi, D. M. Jerina, and R. E. Kouri, Genetic differences in benzo[a] pyrene carcinogenic index in vivo and in mouse cytochrome P, 450-mediated benzo [a] pyrene metabolite binding to DNA in vitro, Chap. 12, this volume.Google Scholar
  99. 99.
    J. A. Miller and E. C. Miller, The concept of reactive electrophilic metabolites in chemical carcinogenesis: Recent results with aromatic amines, safrole, and aflatonin B1, Chap. 2.Google Scholar
  100. 100.
    J. R. Gillette, Kinetics of reactive metabolites and covalent binding in vivo and in vitro, Chap. 3.Google Scholar
  101. 101.
    J. R. Mitchell, S. D. Nelson, W. R. Snodgrass, and J. A. Timbrell, Metabolic activation of hydrazines to highly reactive hepatotoxic intermediates, Chap. 27.Google Scholar
  102. 102.
    D. J. Jollow and C. Smith, Biochemical aspects of toxic metabolites: Formation, detoxication, and covalent binding, Chap. 4.Google Scholar
  103. 103.
    K. C. Chen and J. Tang, Amino acid sequence around the epoxide-reactive residues in pepsin, J. Biol. Chem. 247, 2566–2574 (1972).PubMedGoogle Scholar
  104. 104.
    A. Quaroni, E. Gershon, and G. Semanza, Affinity labeling of the active sites in the sucrase—isomaltase complex from small intestine, J. Biol. Chem. 249, 6424–6433 (1974), and references therein.PubMedGoogle Scholar
  105. 105.
    E. T. Bucovax, J. C. Morrison, H. L. James, C. F. Dais, and J. L. Wood, Reaction of polycyclic hydrocarbon—cysteine conjugates with the aminoacyl-RNA synthetase system, Cancer Res. 30, 155–161 (1970).Google Scholar
  106. 106.
    S. V. Molinary and J. L. Wood, Phenanthrene bound to a protein by biosynthesis, Biochem. Biophys. Res. Commun. 43, 899–904 (1971).CrossRefGoogle Scholar
  107. 107.
    J. Frendo and J. L. Wood, Incorporation of S-(9-hydroxy-9,10dihydro-10-phenanthryl)-L-cysteine into rabbit hemoglobin, Proc. Soc. Exp. Biol. Med. 139, 173–175 (1972).PubMedGoogle Scholar
  108. 108.
    D. M. Jerina, H. Yagi, and J. W. Daly, Arene oxides-oxepins, Heterocycles 1, 267–326 (1973).CrossRefGoogle Scholar
  109. 109.
    A. M. Jeffrey, H. J. C. Yeh, D. M. Jerina, R. M. DeMarinis, D. H. Foster, D. E. Piccolo, and G. A. Berchtold, Stereochemical course in reactions between nucleophiles and arene oxides, J. Am. Chem. Soc. 96, 6929–6937 (1974).CrossRefGoogle Scholar
  110. 110.
    P. Y. Bruice, T. C. Bruice, P. M. Dansette, H. G. Selander, H. Yagi, and D. M. Jerina, A comparison of the mechanism of solvolysis and rearrangement of K-region vs. non-Kregion arene oxides of phenanthrene. Comparative solvolytic rate constants of K-region and non-K-region arene oxides, J. Am. Chem. Soc. 98, 2965–2973(1976).CrossRefGoogle Scholar
  111. 111.
    P. Y. Bruice, T. C. Bruice, H. Yagi, and D. M. Jerina, Nucleophilic displacements on the arene oxides of phenanthrene, J. Am. Chem. Soc. 98, 2973–2981 (1976).CrossRefGoogle Scholar
  112. 112.
    A. M. Jeffrey and D. M. Jerina, Novel rearrangements during dehydration of arene oxide adducts, J. Am. Chem. Soc. 97, 4427–4428 (1975).CrossRefGoogle Scholar
  113. 113.
    D. M. Jerina, Products, specificity, and assay of glutathione S-epoxide transferase, in: Glutathione, Metabolism and Function (I. M. Arias and W. B. Jakoby, eds.), pp. 267–279, Raven Press, New York (1976).Google Scholar
  114. 114.
    W. B. Jakoby and T. A. Fjellstedt, Epoxidases, in: The Enzymes, 3rd ed., Vol. 7 (P. D. Boyer, ed.), pp. 199–212, Academic Press, New York (1972).Google Scholar
  115. 115.
    B. Ketterer and L. Christodoulides, Two specific azodye-carcinogen-binding proteins of the rat liver: The identity of the amino acid residues which bind to the azodye, Chem.-Biol. Interactions 1, 173–183 (1969/1970).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Donald M. Jerina
    • 1
  • John R. Bend
    • 2
  1. 1.Laboratory of Chemistry National Institute of Arthritis, Metabolism, and Digestive DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Pharmacology Branch National Institute of Environmental Health SciencesNational Institutes of Health ResearchTriangle ParkUSA

Personalised recommendations