Neurotransmitter Theories of Schizophrenia

  • Steven Matthysse
  • Jonathan Sugarman


The release and re-uptake of theories of schizophrenia is a process nearly as universal as neurotransmission itself, since every neurotransmitter has been proposed, at one time or another, as contributing to the etiology of the disease. There are theories implicating acetylcholine, noradrenaline, serotonin, GABA, and dopamine. Certainly this phenomenon underscores the relevance of basic research, since each new discovery of neuroregulatory substances brings with it possibilities for theorizing and experimenting about schizophrenia.


Antipsychotic Drug Schizophrenic Patient Homovanillic Acid Corpus Striatum Continuous Performance Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abood, L. G., and Biel, J. H., 1962, Anticholinergic psychotomimetic agents, Int. Rev. Neurobiol. 4:217–273.Google Scholar
  2. Aghajanian, G. K., Foote, W. E., and Sheard, M. H., 1968, Lysergic acid diethylamide: Sensitive neuronal units in the midbrain raphe, Science 161:706–708.PubMedGoogle Scholar
  3. Aghajanian, G. K., Foote, W. E., and Sheard, M. H., 1970, Action of psychotogenic drugs on single midbrain raphe neurons, J. Pharmacol. Exp. Ther. 171:178–187.PubMedGoogle Scholar
  4. Alzheimer, A., 1897, Beitrage zur pathologischen Anatomie der Hirnrinde und zur anatomischen Grundlage einiger Psychosen, Monatschr. Psychiatr. Neurol. 2:82–120.Google Scholar
  5. AndÉn, N.-E., 1972, Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and anti-acetylcholine drugs, J. Pharm. Pharmacol. 24:905–906.PubMedGoogle Scholar
  6. Angrist, B. M., and Gershon, S., 1970, The phenomenology of experimentally induced amphetamine psychosis — preliminary observations, Biol. Psychiatry 2:95–107.PubMedGoogle Scholar
  7. Atsmon, A., Blum, I., Wijsenbeek, H., Maoz, B., Steiner, M., and Ziegelman, G., 1971, The short-term effects of adrenergic-blocking agents in a small group of psychotic patients, Psychiatr. Neurol. Neurochir. 74:251–258.Google Scholar
  8. Bidder, T. G., Mandel, L. R., Ahn, H. S., Vandeeuvel, W. J. A., and Walker, R. W., 1974, Blood and urinary dimethyltryptamine concentrations in acute psychotic disorders, Lancet 1:165.PubMedGoogle Scholar
  9. Bleuler, E., 1950, Dementia Praecox or the Group of Schizophrenias, International University Press, New York (orig. pub. 1911).Google Scholar
  10. Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1971, Studies on norepinephrine-containing afferents to purkinje cells of rat cerebellum. II. Sensitivity of purkinje cells to norepinephrine and related substances administered by microiontophoresis, Brain Res. 25:523–534.PubMedGoogle Scholar
  11. Boring, E. G., 1950, A History of Experimental Psychology, Apple ton-Century-Crofts, New York.Google Scholar
  12. Boullin, D. J., Coleman, M., and O’Brien, R. A., 1970, Abnormalities in platelet 5-hydroxytryptamine efflux in patients with infantile autism, Nature 226:371.PubMedGoogle Scholar
  13. Bowers, M. B., Jr., 1973, 5-Hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) following probenecid in acute psychotic patients treated with phenothiazines, Psychopharmacologia 28:309–318.PubMedGoogle Scholar
  14. Bradley, P. B.. 1963, Phenothiazine derivatives, in: Physiological Pharmacology, Vol. 1 (W. Root and F. Hofmann, eds.), pp. 417–477, Academic Press, New York.Google Scholar
  15. Bunney, B. S., and Aghajanian, G. K., 1975, Antipsychotic drugs and central dopaminergic neurons: A model for predicting therapeutic efficacy and extrapyramidal side effects, in: Prediction in Psychopharmacology (A. Sudilovsky, S. Gershon, and B. Beer, eds.), Raven Press, New York.Google Scholar
  16. Bürki, H. R., Eichenbergen, E., Sayers, A. C., and White, T. G., 1975, Clozapine and the dopamine hypothesis of schizophrenia: A critical appraisal, Pharmakopsychiatrie 8:115–121.Google Scholar
  17. Burkman, A. M., 1973, Biological activity of apomorphine fragments: Dissociation of emetic and stereotypicaleffects Neuropharmacology 12:83–85.PubMedGoogle Scholar
  18. Callaway, E., 1959, The influence of amobarbital (amylbarbitone) and methamphetamine on the focus of attention, J. Ment. Sci. 105:382–392.PubMedGoogle Scholar
  19. Callaway, E., and Band, R. J., 1958, Some psychopharmacological effects of atropine, Arch. Neurol. Psychiatry 79:91–102.Google Scholar
  20. Callaway, E., and Stone, G., 1970, Drugs and Behavior, Wiley, New York.Google Scholar
  21. Carlsson, A., and Lindqvist, M., 1963, Effect of chlorpromazine and haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. (Kbh.) 20:140–144.Google Scholar
  22. Carroll, B. J., Frazer, A., Schless, A., and Mendels, J., 1973, Cholinergic reversal of manic symptoms, Lancet 1:427–428.PubMedGoogle Scholar
  23. Carpenter, W. T., Fink, E. B., Narasimhachari, N., and Himwich, H. E., 1975, A test of the transmethylation hypothesis in acute schizophrenic patients, Am. J. Psychiatry 132:1067–1071.PubMedGoogle Scholar
  24. Childs, B., Worden, F., Matthysse, S., and Gershon, E., (eds.), 1976, Frontiers in psychiatric genetics, Neurosciences Research Program Bulletin No. 14, pp. 1–107.Google Scholar
  25. Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L., and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs, Proc. Natl. Acad. Sci. U.S.A. 71:1113–1117.PubMedGoogle Scholar
  26. Cole, J. O., and Clyde, D. J., 1961, Extrapyramidal side effects and clinical response to the phenothiazines, Rev. Can. Biol. 20:565–574.PubMedGoogle Scholar
  27. Creveling, C. R., and Daly, J. W., 1967, Identification of 3, 4-dimethoxyphenylethylamine from schizophrenic urine by mass spectrometry, Nature 216:190–191.PubMedGoogle Scholar
  28. Cromwell, R. L., and Dokecki, P. R., 1968, Schizophrenic language: A disattention interpretation, in: Developments in Applied Psycholinguistics Research (S. Rosenberg and J. H. Koplin, eds.), pp. 209–260, Macmillan, New York.Google Scholar
  29. Davison, K., and Bagley, C. R., 1969, Schizophrenia-like psychoses associated with organic disorders of the central nervous system: A review of the literature, in: Current Problems in Neuropsychiatry: Schizophrenia, Epilepsy, the Temporal Lobe (R. N. Herrington, ed.), pp. 113–184, Br. J. Psychiatry Spec. Publ. No. 4, Headley Bros., Ashford, Kent.Google Scholar
  30. Day, H., and Thomas, E. L., 1967, Effect of amphetamine on selective attention, Percept. Mot. Skills 29:1119–1125.Google Scholar
  31. Domino, E. F., 1964, Neurobiology of phencyclidine (Sernyl), a drug with an unusual spectrum of pharmacological activity, Int. Rev. Neurobiol. 6:303–347.PubMedGoogle Scholar
  32. Downing, R. W., Ebert, J. N., and Shubrooks, S. J., 1963, Effects of phenothiazines on the thinking of acute schizophrenics, Percept. Mot. Skills 17:511–520.PubMedGoogle Scholar
  33. Dunlap, C. B., 1924, Dementia praecox. Some preliminary observations on brains from carefully selected cases, and a consideration of certain sources of error, Am. J. Psychiatry 3:403–421.Google Scholar
  34. Dunner, D. L., Cohn, C. K., Weinshilboum, R. M., and Wyatt, R. J., 1973, The activity of dopamine beta-hydroxylase and methionine-activating enzyme in blood of schizophrenic patients, Biol. Psychiatry 6:215–220.PubMedGoogle Scholar
  35. Ellinwood, E. H., Jr., Sudilovsky, A., and Nelson, L. M., 1973, Evolving behavior in the clinical and experimental amphetamine (model) psychosis, Am. J. Psychiatry 130:1088–1093.PubMedGoogle Scholar
  36. Frederiksen, P. K., 1975, Baclofen in the treatment of schizophrenia, Lancet 1:702–703.PubMedGoogle Scholar
  37. Friedhoff, A. J., and Van Winkle, E., 1962, The characteristics of an amine found in the urine of schizophrenic patients, J. Nerv. Ment. Disord. 135:550–555.Google Scholar
  38. Friedhoff, A. J., Schweitzer, J. W., and Miller, J. 1972, Biosynthesis of mescaline and N-acetylmescaline by mammalian liver, Nature 237:454–455.PubMedGoogle Scholar
  39. Fulcher, J. H., Gallagher, W. J., and Pfeiffer, C. C., 1957, Comparative lucid intervals after amobarbital, CO2, and arecoline in the chronic schizophrenic, Arch. Neurol. Psychiatry 78:392–395.Google Scholar
  40. Ganong, W. F., 1974, Brain mechanisms regulating the secretion of the pituitary gland, in: The Neurosciences: Third Study Program (F. O. Schmitt and F. G. Worden, eds.), pp. 549–563, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  41. Garelis, E., Gillin, J. C., Wyatt, R. J., and Neff, N., 1975, Elevated blood serotonin concentrations in unmedicated chronic schizophrenic patients: A preliminary study, Am. J. Psychiatry 132:184–186.PubMedGoogle Scholar
  42. Gerlach, J., Thorsen, K., and Fog, R., 1975, Extrapyramidal reactions and amine metabolites in cerebrospinal fluid during haloperidol and clozapine treatment of schizophrenic patients, Psychopharmacologia 40:341–350.PubMedGoogle Scholar
  43. Goldstein, M., Freedman, L. S., Ebstein, R. P., and Park, D. H., 1974, Studies on dopamine-beta-hydroxylase in mental disorders, J. Psychiatr. Res. 11:205–210.PubMedGoogle Scholar
  44. Green, D. M., and Swets, J. A., 1974, Signal Detection Theory and Psychophysics, Krueger, New York.Google Scholar
  45. Groves, P. M., Wilson, C. J., Young, S. J., and Rebec, G. V., 1975, Self-inhibition by dopaminergic neurons, Science 190:522–529.PubMedGoogle Scholar
  46. Gupta, G. P., and Dhawan, B. N., 1965, Blockade of apomorphine pecking with phenothiazines, Psychopharmacologia 8:120–130.PubMedGoogle Scholar
  47. Hemmel, H. T., 1968, Regulation of internal body temperature, Annu. Rev. Physiol. 30:644–710.Google Scholar
  48. Hornykiewicz, O., 1966, Dopamine (3-hydroxytyramine) and brain function, Pharm. Rev. 18:925–964.PubMedGoogle Scholar
  49. Ingle, D., 1975, Focal attention in the frog: Behavioral and physiological correlates, Science 188:1033–1034.PubMedGoogle Scholar
  50. Iversen, L. L., Bird, E. D., Mackay, A. V. P., and Rayner, C. N., 1974, Analysis of glutamate decarboxylase in post-mortem brain tissue in Huntington’s chorea, J. Psychiatr. Res. 11:255–256.PubMedGoogle Scholar
  51. Janssen, P. S. J., Niemegeers, C.J. E., Schellekens, H. K. L., and Lenaerts, F. M., 1967, Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data? IV. An improved experimental design for measuring the inhibitory effects of neuroleptic drugs on amphetamine- or apomorphine-induced “chewing” and “agitation” in rats, Arzneim. Forsch. 17:841–854.Google Scholar
  52. Janowsky, D. S., El-Yousef, M. K., Davis, J. M., and Sekerke, H. J., 1973a, Parasympathetic suppression of manic symptoms by physostigmine, Arch. Gen. Psychiatry 28:542–547.PubMedGoogle Scholar
  53. Janowsky, D. S., El-Yousef, M. K., Sekerke, J., and Davis, J. M., 1973b, Provocation of schizophrenic symptoms by intravenous administration of methylphenidate, Arch. Gen. Psychiatry 28:185–191.PubMedGoogle Scholar
  54. Janowsky, D. S., El-Yousef, and Davis, J. M., 1973c, Antagonistic effects of physostigmine and methylphenidate in man, Am. J. Psychiatry 130:1370–1376.PubMedGoogle Scholar
  55. Kaada, B., and Bruand, H., 1960, Blocking of the cortically induced behavioral attention (orienting) response by chlorpromazine, Psychopharmacologia 1:372–388.PubMedGoogle Scholar
  56. Kakimoto, Y., Sano, I., Kanazawa, A., Tsujio, T., and Kaneko, Z., 1967, Metabolic effects of methionine in schizophrenic patients pretreatecl with a monoamine oxidase inhibitor, Nature 216:1110–1111.PubMedGoogle Scholar
  57. Karczmar, A. G., 1970, Central cholinergic pathways and their behavioral implications, in: Principles of Psychopharmacology (W. G. Clark and J. Del Giudice, eds.), pp. 57–86, Academic Press, New York.Google Scholar
  58. Karobath, M. E., 1975, Dopamin-Rezeptor-Blockade, ein möglicher Wirkungsmechanismus antipsychotichen Drogen, Pharmakopsychatrie 8:151–161.Google Scholar
  59. Karobath, M., and Leitich, H., 1974, Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain, Proc. Natl. Acad. Sci. U.S.A. 71:2915–2918.PubMedGoogle Scholar
  60. Kety, S. S., 1967, Current biochemical approaches to schizophrenia, N. Engl. J. Med. 276:325–331.PubMedGoogle Scholar
  61. Kety, S. S., 1971, The biogenic amines in the central nervous system: Their possible roles in arousal, emotion and learning, in: The Neurosciences: SecondStudy Program (F. O. Schmitt, ed.), pp. 324–336, Rockefeller University Press, New York.Google Scholar
  62. Key, B. J., 1961, The effect of drugs on discrimination and sensory generalization of auditory stimuli in rats, Psychopharmacologia (Berlin) 2:352–362.Google Scholar
  63. Killam, E. K., and Killam, K. F., 1959, Phenothiazine — pharmacologic studies, in: The Effect of Pharmacologic Agents on the Nervous System (F. J. Braceland, ed.), Chapter 37, p. 245, Williams and Wilkins, Baltimore.Google Scholar
  64. Kornetsky, C., and Bain, G., 1965, The effects of chlorpromazine and pentobarbital on sustained attention in the rat, Psychopharmacologia (Berlin) 8:277–284.Google Scholar
  65. Koslow, S. H., Post, R., Goodwin, F., and Gillin, C., 1975, Mass fragmentographic identification and quantification of 5-methoxytryptamine (5MT) in human cerebrospinal fluid (CSF), Abstracts, 5th Ann. Mtg., Soc. for Neurosci. p. 361.Google Scholar
  66. Kraepelin, E., 1919, Dementia Praecox and Paraphrenia, E. and S. Livingstone, Edinburgh (orig. pub. 1913).Google Scholar
  67. Lang, P. J., and Buss, A. H., 1965, Psychological deficit in schizophrenia: II. Interference and activation, J. Abnorm. Psychol. 70:77–106.PubMedGoogle Scholar
  68. Lipinski, J. F., Mandel, L. R., Ahn, H. S., Vandeeuvel, W. J. A., and Walker, R. W., 1974, Blood dimethyltryptamine concentrations in psychotic disorders, Biol. Psychiatry 9:89–91.PubMedGoogle Scholar
  69. Maayani, S., Weinstein, H., Cohen, S., and Sokolovsky, M., 1973, Acetylcholine-like molecular arrangement in psychomimetic anticholinergic drugs, Proc. Natl. Acad. Sci. U.S.A. 70:3103–3107.PubMedGoogle Scholar
  70. Maickel, R. P., Braunstein, M. C., Mlynn, M., Snodgrass, W. R., and Webb, R. W., 1974, Behavioral, biochemical and pharmacological effects of chronic dosage of phenothiazine tranquilizers in rats, in: The Phenothiazines and Structurally Related Drugs (I. S. Forrest, C. J. Carr, and E. Usdin, eds.), pp. 593–602, Raven Press, New York.Google Scholar
  71. Mandel, L., Ahn, H. S., Vandeeuvel, W. J. A., and Walker, R. W., 1972, Indoleamine-N-methyltransferase in human lung, Biochem. Pharmacol. 21:1197–1200.PubMedGoogle Scholar
  72. Mandell, A. J., 1974, The role of adaptive regulation in the pathophysiology of psychiatric disease, J. Psychiatr. Res. 11:173–179.PubMedGoogle Scholar
  73. Mandell, A. J., and Morgan, M., 1971, Indole(ethyl)amine-N-methyltransferase in human brain, Nature (London), New Biol. 230:85–87.Google Scholar
  74. Matthysse, S., 1973, Antipsychotic drug actions: A clue to the neuropathology of schizophrenia? Fed. Proc. 32:200–205.PubMedGoogle Scholar
  75. Matthysse, S., 1974a, Implications of feedback control in catecholamine neuronal systems, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 1139–1142, Pergamon Press, Oxford.Google Scholar
  76. Matthysse, S., 1974b, Schizophrenia: Relationships to dopamine transmission, motor control, and feature extraction, in: The Neurosciences: Third Study Program (F. O. Schmitt and F. G. Worden, eds.), pp. 733–737, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  77. Matthysse, S., 1975, Neuronal models of transmitter balance, in: Neurotransmitters and Autocoid Balances Regulating Behavior (E. F. Domino and J. Davis, eds.), pp. 229–233, Edwards Bros., Ann Arbor.Google Scholar
  78. Matthysse, S., and Haber, S., 1975, Animal models of schizophrenia, in: Model Systems in Biological Psychiatry (D. J. Ingle and H. M. Shein, eds.), pp. 4–25, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  79. Matthysse, S., and Kety, S. S., 1974, Catecholamines and schizophrenia, J. Psychiatr. Res. 11:1–369.Google Scholar
  80. Matthysse, S., and Lipinski, J., 1975, Biochemical aspects of schizophrenia, Annu. Rev. Med. 26:551–565.PubMedGoogle Scholar
  81. Mcghie, A., and Chapman, J., 1961, Disorders of attention and perception in early schizophrenia, Brit. J. Med. Psychol. 34:103–116.PubMedGoogle Scholar
  82. Meltzer, H. Y., Sachar, E. J., and Frantz, A. G., 1974, Serum prolactin levels in unmedicated schizophrenic patients, Arch. Gen. Psychiatry 31:564–569.PubMedGoogle Scholar
  83. Meltzer, H. Y., Daniels, S., and Fang, V. S., 1975, Clozapine increases rat serum prolactin levels, Life Sci. 17:339–342.PubMedGoogle Scholar
  84. Mettler, F. A., 1955, Perceptual capacity, functions of the corpus striatum and schizophrenia, Psychiatr. Q. 29:89–111.PubMedGoogle Scholar
  85. Meyer, A., 1963, Psychoses of obscure pathology, in: Greenfield’s Neuropathology, 2nd ed. (W. Blackwood, ed.), pp. 621–635, Williams and Wilkins, Baltimore.Google Scholar
  86. Miller, R. J., 1974, The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3’, 4’-monophosphate production in rat neostriatum and limbic forebrain, Mol. Pharmacol. 10:759–766.Google Scholar
  87. Miller, R. J., and Hiley, C. R., 1974, Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism, Nature 248:596–597.PubMedGoogle Scholar
  88. Mirsky, A., and Kornetsky, C., 1975, On the dissimilar effects of drugs on the digit symbol substitution and continuous performance tests Psychopharmacologia (Berlin) 5:161–177.Google Scholar
  89. Mirsky, A., Tecce, J., Harman, N., and Oshima, H., 1975, EEG correlates of impaired attention performance under secobarbital and chlorpromazine in the monkey, Psychopharmacologia (Berlin) 41:35–41.Google Scholar
  90. Mountcastle, V. B., 1975, The view from within: Pathways to the study of perception, Johns Hopkins Med. J. 136:109–131.PubMedGoogle Scholar
  91. Myers, R. D., 1970, The role of hypothalamic transmitter factors in the control of body temperature, in: Physiological and Behavioral Temperature Regulation (J. H. Hardy, A. P. Gagge, and J. A. J. Stolwijk, eds.), Charles C. Thomas, Springfield, Illinois.Google Scholar
  92. Nash, H., 1962, Psychologic effects of amphetamines and barbiturates, J. Nerv. Ment. Disord. 134:203–217.Google Scholar
  93. Nielsen, J., and Goldstein, L., 1972, Improvement of performance on an attention task with chronic nicotine treatment in rats, Psychopharmacologia 26:347–360.Google Scholar
  94. Nishimura, T., and Gjessing, L. R., 1965, Failure to detect 3, 4-dimethoxyphenylethylamine and bufotenine in the urine from a case of periodic catatonia, Nature 206:963–964.PubMedGoogle Scholar
  95. Orzack, M. H., and Kornetsky, C., 1966, Attention dysfunction in chronic schizophrenia, Arch. Gen. Psychiatry 14:323–326.PubMedGoogle Scholar
  96. Orzack, M. H., Kornetsky, C., and Freeman, H., 1967, The effects of daily. administration of carphenazine on attention in the schizophrenic patient, Psychopharmacologia (Berlin) 11:31–38.Google Scholar
  97. Osmond, H., and Smythies, J., 1952, Schizophrenia: A new approach, J. Ment. Sci. 98:309–315.PubMedGoogle Scholar
  98. Perry, T. L., Hansen, S., Maougall, L., and Schwartz, C. J., 1966, Urinary amines in chronic schizophrenia, Nature 212:146–148.PubMedGoogle Scholar
  99. Persson, T., and Roos, B.-E., 1969, Acid metabolites from monoamines in CSF of chronic schizophrenics, Br. J. Psychiatry 115:95–98.PubMedGoogle Scholar
  100. Petti Grew, J. D., and Daniels, J. D., 1973, Gamma-aminobutyric acid antagonism in visual cortex: Different effects on simple, complex and hypercomplex neurons, Science 182:81–83.Google Scholar
  101. Plum, F., 1972, Neuropathological findings, in: Prospects for Research in Schizophrenia (S. S. Kety and S. Matthysse, eds.), Neurosciences Research Program Bulletin No. 10, pp. 370–507.Google Scholar
  102. Pollin, W., 1972, The pathogenesis of schizophrenia. Arch. Gen. Psychiatry 27:29–37.PubMedGoogle Scholar
  103. Pollin, W., Cardon, P. V., Jr., and Kety, S. S., 1961, Effects of amino acid feedings in schizophrenic patients treated with iproniazid, Science 133:104–105.PubMedGoogle Scholar
  104. Post, R. M., and Goodwin, F. K., 1975, Time-dependent effects of phenothiazines on dopamine turnover in psychiatric patients, Science 190:488–489.PubMedGoogle Scholar
  105. Pugh, L. A., 1968, Response time and electrodermal measures in chronic schizophrenia: The effects of chlorpromazine, J. Nerv. Ment. Disord. 146:62–70.Google Scholar
  106. Quarton, G., and Talland, G., 1962, The effect of methamphetamine and pentobarbital on two measures of attention, Psychopharmacologia 3:66–71.Google Scholar
  107. Randrup, A., and Munkvad, I., 1974, Pharmacology and physiology of stereotyped behavior, J. Psychiatr. Res. 11:1–10.PubMedGoogle Scholar
  108. Rappaport, M., Rogers, N., Reynolds, S., and Weinmann, R., 1966, Comparative ability of normal and chronic schizophrenic subjects to attend to competing voice messages: Effects of method of presentation, message load and drugs, J. Nerv. Ment. Disord. 143:16–27.Google Scholar
  109. Rimon, R., Roos, B.-E., Rakkolainen, V., and Alanen, Y., 1971, The content of 5-HIAA and HVA in the CSF of patients with acute schizophrenia, J. Psychosom. Res. 15:375–378.PubMedGoogle Scholar
  110. Roberts, E., 1972, An hypothesis suggesting that there is a defect in the GABA system in schizophrenia, in: Prospects for Research on Schizophrenia (S. S. Kety and S. Matthysse, eds.), Neurosciences Research Program Bulletin No. 10, pp. 370–507.Google Scholar
  111. Rose, D., and Blakemore, C., 1974, Effects of bicuculline on functions of inhibition in visual cortex, Nature 249:375–377; erratum, p. 869.PubMedGoogle Scholar
  112. Rosenbaum, G., Cohen, B. D., Luby, E. D., Gottlieb, J. S., and Yelen, D., 1959, Comparison of Sernyl with other drugs: Simulation of schizophrenic performance with Sernyl, LSD-25, and amobarbital (Amytal) sodium. I. Attention, motor function and proprioception, Arch. Gen. Psychiatry 1:651–656.Google Scholar
  113. Rotrosen, J., Wallach, M. B., Angrist, B., and Gershon, S., 1972, Antagonism of apomorphine-induced stereotypy and emesis in dogs by thioridazine, haloperidol and pimozide, Psychopharmacologia 26:185–194.PubMedGoogle Scholar
  114. Rowntree, D. W., Nevin, S., and Wilson, A., 1950, The effects of diisopropylfluorophosphonate in schizophrenia and manic depressive psychosis, J. Neurol. Neurosurg. Psychiatry 13:47–62.PubMedGoogle Scholar
  115. Saavedra, J. M., and Axelrod, J., 1972, Psychotomimetic N-methylated tryptamines: Formation in brain in vivo and in vitro, Science 175:1365–1366.PubMedGoogle Scholar
  116. Saavedra, J. M., and Axelrod, J., 1973, Effect of drugs on the tryptamine content of rat tissues, J. Pharmacol. Exp. Ther. 185:523–529.PubMedGoogle Scholar
  117. Sachar, E. J., 1971, Growth hormone responses in depressive illness, Arch. Gen. Psychiatry 25:263–269.Google Scholar
  118. Sachar, E. J., Gruen, P. H., Karasu, T. B., Altman, N., and Frantz, A. G., 1975, Thioridazine stimulates prolactin secretion in man, Arch. Gen. Psychiatry 32:885–886.PubMedGoogle Scholar
  119. Sachar, E. J., Gruen, P. H., Altman, N., Halpern, F. S., and Frantz, A. G., 1976, The use of neuroendocrine techniques in psychopharmacological research, in: Hormones, Behavior and Psychopathology (E.J. Sachar, ed.), pp. 161–176, Raven Press, New York.Google Scholar
  120. Salzinger, K., 1957, Shift in judgment of weights as a function of anchoring stimuli and instructions in early schizophrenics and normals, J. Abnorm. Soc. Psychol. 55:43–49.Google Scholar
  121. Salzinger, K., Portnoy, S., Pisoni, D. B., and Feldman, R. S., 1970, The immediacy hypothesis and response-produced stimuli in schizophrenic speech, J. Abnorm. Psychol. 76:258–264.PubMedGoogle Scholar
  122. Schelkunov, E. L., 1967, Integrated effect of psychotropic drugs on the balance of cholino-, adreno-, and serotoninergic processes in the brain as a basis of their gross behavioral and therapeutic actions, Act. Nerv. Super. 9:207–217.Google Scholar
  123. Sedvall, G., Fyro, B., Nyback, H., Wiesel, F. A., and Wode-Helgodt, B., 1974, Mass fragmentometric determination of homovanillic acid in lumbar cerebrospinal fluid of schizophrenic patients during treatment with antipsychotic drugs, J. Psychiatr. Res. 11:75–80.PubMedGoogle Scholar
  124. Seeman, P., and Lee, T., 1975, Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons, Science 188:1217–1219.PubMedGoogle Scholar
  125. Shakow, D., 1962, Segmental set, Arch. Gen. Psychiatry 6:1–17.PubMedGoogle Scholar
  126. Siggins, G. R., Hoffer, B. J., and Ungerstedt, U., 1974, Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons, Life Sci. 15:779–792.PubMedGoogle Scholar
  127. Snyder, S. H., Banerjee, S. P., Yamamura, H. I., and Greenberg, D., 1974a, Drugs, neurotransmitters, and schizophrenia, Science 184:1243–1253.PubMedGoogle Scholar
  128. Snyder, S. H., Greenberg, D., and Yamamura, H. I., 1974B, Antischizophrenic drugs: Affinity for muscarinic cholinergic receptor sites in the brain predicts extrapyramidal effects, J. Psychiatr. Res. 11:91–95.PubMedGoogle Scholar
  129. Spielmeyer, W., 1930, The problem of the anatomy of schizophrenia, J. Nerv. Dis. 72:241–244.Google Scholar
  130. Stabenau, J. R., Creveling, C. R., and Daly, J., 1970, The “pink spot,” 3,4-dimethoxyphenylethylamine, common tea, and schizophrenia, Am. J. Psychiatry 127:611–616.PubMedGoogle Scholar
  131. Stawarz, R. J., Robinson, S., Sulser, F., and Dingell, J. V., 1974, On the significance of the increase of homovanillic acid (HVA) caused by antipsychotics in corpus striatum and limbic forebrain, Fed. Proc. 33:246.Google Scholar
  132. Stein, L., and Wise, C. D., 1971, Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6-hydroxydopamine, Science 171:1032–1036.PubMedGoogle Scholar
  133. Sutton, S., and Zubin, J., 1965, Effect of sequence on reaction time in schizophrenia, in: Behavior, Aging and the Nervous System: Biological Determinants of Speed of Behavior and Its Change with Age (J. E. Birren and A. T. Welford, eds.), Charles C Thomas, Springfield, Illinois.Google Scholar
  134. Swazey, J. P., 1974, Chlorpromazine in Psychiatry: A Study of Therapeutic Innovation, p. 113, M.I.T. Press, Cambridge, Massachusetts.Google Scholar
  135. Szara, S., 1956, Dimethyltryptamine: Its metabolism in man; the relation of its psychotic effect to serotonin metabolism, Experientia 12:441–442.PubMedGoogle Scholar
  136. Szara, A., 1967, Hallucinogenic amines and schizophrenia (with a brief addendum on N-dimethyltryptamine), in: Amines and Schizophrenia (H. E. Himwich, S. S. Kety, and J. R. Smythies, eds.), pp. 181–197, Pergamon Press, Oxford.Google Scholar
  137. Takesada, M., Kakimoto, Y., Sano, I., and Kaneko, Z., 1963, 3, 4-Dimethoxyphenylethy-lamine and other amines in the urine of schizophrenic patients, Nature 199:203–204.PubMedGoogle Scholar
  138. Teuber, H. L., 1972, Effects of focal brain lesions, in: Prospects for Research on Schizophrenia (S. S. Kety and S. Matthysse, eds.), Neurosciences Research Program Bulletin No. 10, pp. 381–385.Google Scholar
  139. Turner, W. J., and Merlis, S., 1959, Effects of some indolealkylamines in man, Arch. Neurol. Psychiatry 81:121–129.Google Scholar
  140. Valzelli, L., 1973, Psychopharmacology: An Introduction to Experimental and Chemical Principles, p. 217, Spectrum, Flushing, New York.Google Scholar
  141. Vogt, C., and Vogt, O., 1952, Proceedings of the First International Congress on Neuropathology, Vol. 1, p. 515, Rosenberg and Sellier, Torino, Italy.Google Scholar
  142. Von Studnitz, W., and Nyman, G. E., 1965, Excretion of 3, 4-dimethoxyphenylethylamine in schizophrenia, Acta Psychiatr. Scand. 41:117–121.Google Scholar
  143. Waldbaum, J. K., Sutton, S., and Kerr, J., 1975, Shift of sensory modality and reaction time in schizophrenia, in: Experimental Approaches to Psychopathology (M. Kietzman, S. Sutton, and J. Zubin, eds.), pp. 167–176, Academic Press, New York.Google Scholar
  144. Warburton, D. M., and Brown, K., 1972, The facilitation of discrimination performance by physostigmine sulphate, Psychopharmacologia (Berlin) 27:275–284.Google Scholar
  145. Weil-Malherbe, H., and Szara, S. I., 1971, The Biochemistry of Functional and Experimental Psychoses, pp. 148–155, Charles C. Thomas, Springfield, Illinois.Google Scholar
  146. Wiesel, F.-A., and Sedvall, G., 1975, Effect of antipsychotic drugs on homovanillic acid levels in striatum and olfactory tubercle of the rat, Eur. J. Pharmacol. 30:364–367.PubMedGoogle Scholar
  147. Weiss, B., 1970, Amphetamine and the temporal structure of behavior, in: Amphetamine and Related Compounds (F. Costa and S. Garrattini, eds.), Raven Press, New York.Google Scholar
  148. Weiss, B., and Laties, V. G., 1962, Enhancement of human performance by caffeine and amphetamines, Pharmacol. Rev. 14:1.PubMedGoogle Scholar
  149. Wise, C. D., Baden, M. M., and Stein, L., 1974, Post-mortem measurement of enzymes in human brain: Evidence of a central noradrenergic deficit in schizophrenia, J. Psychiatr. Res. 11:185–198.PubMedGoogle Scholar
  150. Wolf, A., and Cowen, D., 1949, Pathology, in: Selective Partial Ablation of the Frontal Cortex (A. Mettler, ed.), pp. 453–476, Hoeber Press, New York.Google Scholar
  151. Woolley, D. W., 1957, Serotonin in mental disorders, in: Hormones, Brain Function and Behavior (H. Hoagland, ed.), pp. 127–146, Academic Press, New York.Google Scholar
  152. Wyatt, R. J., Mandel, L. R., Ahn, H. S., Walker, R. W., and Vandeeuvel, W. J. A., 1973a, Gas-chromatographic-mass spectrometric isotope dilution determination of N,N-dimethyltryptamine concentrations in normal and psychiatric patients, Psychopharmacologia 31:265–270.PubMedGoogle Scholar
  153. Wyatt, R. J., Saavedra, J. M., and Axelrod, J., 1973b, A dimethyltryptamine-forming enzyme in human blood, Am. J. Psychiatry 130:754–760.PubMedGoogle Scholar
  154. Wyatt, R. J., Saavedra, J. M., Belmaker, R., Cohen, S., and Pollin, W., 1973C, The dimethyltryptamine forming enzyme in blood platelets: A study in monozygotic twins discordant for schizophrenia, Am. J. Psychiatry 130:1359–1361.PubMedGoogle Scholar
  155. Wyatt, R. J., Schwartz, M. A., Erdelyi, E., and Barchas, J. D., 1975, Dopamine ß-hydroxylase activity in brains of chronic schizophrenic patients, Science 187:368–370.PubMedGoogle Scholar
  156. Wynne, R. D., and Kornetsky, C., 1960, The effect of chlorpromazine and secobarbital on the reaction times of chronic schizophrenics, Psychopharmacologia 1:294–302.PubMedGoogle Scholar
  157. Yaryura-Tobias, J. A., Diamond, B., and Merlis, S., 1970, The action of L-DOPA on schizophrenic patients (a preliminary report), Curr. Ther. Res. 12:528–531.PubMedGoogle Scholar
  158. Yorkston, N. J., Zakimku, S. A., Malik, M. K. U., Morrisson, R. C., and Havard, C. W. H., 1974, Propanolol in the control of schizophrenic symptoms, Br. Med. J. 4:633–635. (see also pp. 614–615).PubMedGoogle Scholar
  159. Zahn, T. P., Rosenthal, D., and Shakow, D., 1973, Effect of irregular preparatory intervals on reaction time in schizophrenia, J. Abnorm. Soc. Psychol. 67:44–52.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Steven Matthysse
    • 1
  • Jonathan Sugarman
    • 1
  1. 1.Mailman Research LaboratoriesMcLean HospitalBelmontUSA

Personalised recommendations