Advertisement

Cryogenic Refrigeration Concepts Utilizing Adsorption Pumping in Zeolites

  • W. H. Hartwig
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 23)

Abstract

Refrigeration without lubrication, vibration, and noise has heretofore been accomplished in at least three distinct forms; thermoelectric junctions that pump heat across a semiconductor PN junction [1], ammonia-water systems that remove heat in an adsorption-percolation-condensation-evaporation cycle [2], and chemisorption systems that exchange hydrogen from lanthanum-nickel and other metal hydrides to develop a pressure difference for circulation of hydrogen gas in a 20-K refrigerator [3,4]. While technically sound, these systems have a mix of advantages and disadvantages that render them unsuitable as the basis for complete cryogenic refrigeration cycles.

Keywords

Metal Hydride Refrigeration Cycle Cryogenic Engineer Desorption Phase Adsorption Isobar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. L. Chang, Energy Conversion, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1963).Google Scholar
  2. 2.
    J. F. Lee and J. W. Sears, Thermodynamics, Addison-Wesley Publishing Company, Reading, Massachusetts (1955).Google Scholar
  3. 3.
    H. H. van Mai and A. Mijnheer, in: Proceedings 4th Intern. Cryogenic Engineering Conference, Iliffe Scientific and Technical Publishers, London (1972), p. 122.Google Scholar
  4. 4.
    J. J. Reilly and R. H. Wiswall, Jr., Inorg. Chem. 13: 218 (1974).CrossRefGoogle Scholar
  5. 5.
    W. H. Hartwig, H. Steinfink, J. P. Masson, and A. W. Woltman, in: Proc. 1976 Region V IEEE Conference, IEEE Cat. 76Chl068-6 Reg 5 (1976), p. 80.Google Scholar
  6. 6.
    D. W. Breck, Zeolite Molecular Sieves, John Wiley and Sons, Inc., New York (1974), p. 628.Google Scholar
  7. 7.
    R. J. Harper, G. R. Stifel, and R. B. Anderson, Can. J. Chem. 47: 4661 (1969).CrossRefGoogle Scholar
  8. 8.
    A. K. Lee and D. Basmadjian, Can. J. Chem. Eng. 48: 682 (1970).CrossRefGoogle Scholar
  9. 9.
    L. Riekert, Advan. Catal. 21: 281 (1970).CrossRefGoogle Scholar
  10. 10.
    M. M. Dubinin, J. Colloid Interface Sci. 23: 487 (1967).CrossRefGoogle Scholar
  11. 11.
    D. M. Ruthven, Nature, Phys. Sci. 232 (29): 70 (1971).Google Scholar
  12. 12.
    B. C. Lippens and J. H. DeBoer, J. Catal. 4: 319 (1965).CrossRefGoogle Scholar
  13. 13.
    I. Prigogine, Molecular Theory of Solutions, North-Holland Publishing Company, Amsterdam, the Netherlands (1957).Google Scholar
  14. 14.
    T. L. Hill, Introduction to Statistical Thermodynamics, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts (1960).Google Scholar
  15. 15.
    E. A. Guggenheim, Mixtures, Oxford University Press, Oxford, England (1952).Google Scholar

Copyright information

© Plenum Press · New York and London 1978

Authors and Affiliations

  • W. H. Hartwig
    • 1
  1. 1.The University of Texas at AustinAustinUSA

Personalised recommendations