Skip to main content

Neurotransmitters in the Avian Visual System

  • Chapter
Amino Acids as Chemical Transmitters

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 16))

Abstract

Increasing evidence that amino acids are involved in chemical synaptic transmission has been obtained by subjecting them to the criteria established for neurotransmitters like acetylcholine and the catecholamines. Their concentration relative to other regions of the nervous system should be high, their synthetizing enzyme(s) must show a high activity and the nerve endings should possess a selective high affinity uptake mechanism All those presynaptic characteristics would then diminish or disappear when the terminals degenerate following a lesion of the afferent neuron or axon. Further, the transmitter candidate should be released from the nerve terminals, either through the effect of high K+ concentration or drugs like veratridine, or through electrical stimulation, diffuse or, better, applied to the corresponding afferent pathway. Microiontophoretic application of the amino acid should mimic the effect of the physiological synaptic action of the transmitter on the postsynaptic element and specific antagonists should prevent this action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aprison, M.H., Daly, E.C., Shank, R.P., and McBride, W.J., 1976, Neurochemical evidence for glycine as a transmitter and a model for its intrasynaptosomal compartmentation, in “Metabolic Compartmentation and Neurotransmission” (S. Berl, D.D. Clarke and D. Schneider, eds.), pp. 37–63, Plenum Press, New York.

    Google Scholar 

  • Barth, R., and Felix, D., 1974, Influence of GABA and glycine and their antagonists on inhibitory mechanisms of pigeon’s optic tectum, Brain Res. 80: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Beart, P.M., 1976, An evaluation of L-glutamate as the transmitter released from optic nerve terminals of the pigeon, Brain Res. 110: 99–114.

    Article  PubMed  CAS  Google Scholar 

  • Blasberg, R.G., 1968, Specificity of cerebral amino acid transport: a kinetic analysis, in “Brain Barrier Systems”, Progress in Brain Research, Vol. 29 ( A. Lajtha and D.H. Ford, eds.), pp. 245–256, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Bondy, S.C., and Purdy, J.L., 1977a, Development of neurotransmitter uptake in regions of the chick brain, Brain Res. 119: 403–416.

    Article  PubMed  CAS  Google Scholar 

  • Bondy, S.C., and Purdy, J.L., 1977b, Putative neuro-transmitters of the avian visual pathway. Brain Res. 119: 417–426.

    Article  PubMed  CAS  Google Scholar 

  • Cajal, S.R., 1891, Sur la fine structure du lobe optique des oiseaux et sur l’origine réelle des nerfs optiques, Int.Mschr.Anat.Physiol. 8: 337–366.

    Google Scholar 

  • Cajal, S.R., 1899, Adiciones a nuestros trabajos sobre los centros ópticos de las aves, Rev.trimest. Microgr. 4: 77–86.

    Google Scholar 

  • Chakrabarti, T., and Daginawala, H.F., 1976, Effect of unilateral visual deprivation and visual stimulation on the activities of glutamate decarboxylase, GABA-α ketoglutarate transaminase, aspartate aminotransferase and hexokinase of the optic lobe of the adult pigeon, J.Neurochem. 27: 273–276.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti, T., Dias, P.D., Roychowdhury, D., and Daginawala, H.F., 1974, Effect of unilateral visual deprivation on the activities of acetylcholinesterase, Cholinesterase and carbonic anhydrase of the optic lobe of pigeon. J.Neurochem. 22: 865–867.

    Article  PubMed  CAS  Google Scholar 

  • Cuenod, M., Sandri, C., and Akert, K., 1970, Enlarged synaptic vesicles as an early sign of secondary degeneration in the optic nerve terminals of the pigeon, J.Cell Sci. 6: 605–613.

    PubMed  CAS  Google Scholar 

  • Cuenod, M., and Schonbach, J., 1971, Synaptic proteins and axonal flow in the pigeon visual pathway, J.Neurochem. 18: 809–816.

    Article  PubMed  CAS  Google Scholar 

  • Cuenod, M., and Streit, P., 1978, Amino acid transmitters and local circuitry in optic tectum, in “The Neurosciences: Fourth Study Program” (F.O. Schmitt and F.G. Worden, eds.), MIT Press, Cambridge, Mass. and London.

    Google Scholar 

  • Divac, I., Fonnum, F., and Storm-Mathisen, J., 1977, High affinity uptake of glutamate in terminals of corticostriatal axons, Nature 266: 377–378.

    Article  PubMed  CAS  Google Scholar 

  • Felix, D., and Frangi, U., 1977, Dimethoxyaporphine as an antagonist of chemical excitation in the pigeon optic tectum. Neuroscience Letters 4: 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Felix, D., and Klinzle, H., 1976, The role of proline in nervous transmission, Adv.Biochem.Psychopharm. 15: 165–173.

    CAS  Google Scholar 

  • Henke, H., and Cuénod, M., 19 78, Uptake of L-alanine, glycine and L-serine in the pigeon central nervous system, submitted.

    Google Scholar 

  • Henke, H., and Fonnum, F., 1976, Topographical and sub-cellular distribution of choline acetyltransferase and glutamate decarboxylase in pigeon optic tectum, J.Neurochem. 27: 387–391.

    Article  PubMed  CAS  Google Scholar 

  • Henke, H., Schenker, T.M., and Cuénod, M., 1976a, Uptake of neurotransmitter candidates by pigeon optic tectum, J.Neurochem. 26: 125–130.

    PubMed  CAS  Google Scholar 

  • Henke, H., Schenker, T.M., and Cuénod, M. 1976b, Effects of retinal ablation on uptake of glutamate, glycine, GABA, proline and choline in pigeon tectum, J.Neurochem. 26: 131–134.

    PubMed  CAS  Google Scholar 

  • Hunt, S.P., and Kunzle, H., 1976a, Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde, axonal and dendritic flow, J.Comp.Neur. 17: 153–172.

    Article  Google Scholar 

  • Hunt, S.P., and Kunzle, H., 1976b, Selective uptake and transport of label within three identified neuronal systems after injection of 3H-GABA into the pigeon optic tectum: An autoradiographic and Golgi study, J.Comp.Neur. 170:173–190.

    Article  PubMed  Google Scholar 

  • Hunt, S.P., Streit, P., Kunzle, H., and Cuénod, M., 1977, Characterization of the pigeon isthmo-tectal pathway by selective uptake and retrograde movement of radioactive compounds and by Golgi-like horseradish peroxidase labeling, Brain Res. 129: 197–212.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, S.P., and Webster, K.E., 1975, The projection of the retina upon the optic tectum of the pigeon, J.Comp.Neur. 162: 433–446.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L., 1971, Role of transmitter uptake mechanisms in synaptic neurotransmission, Brit.J.Pharmacol. 41: 571–591.

    CAS  Google Scholar 

  • Karten, H.J., 1969, The organisation of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon, Ann. N.Y.Acad. Sci. 167: 164–179.

    Article  Google Scholar 

  • Le Fort, D., Henke, H., and Cuenod, M., 1978, Glycine specific 3H-strychine binding in the pigeon CNS, in preparation.

    Google Scholar 

  • Logan, W.J., and Snyder, S.H., 1971, Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat, Nature 234: 297–299.

    Article  PubMed  CAS  Google Scholar 

  • Meier, R.E., Mihailovic, J., and Cuénod, M., 1974, Thalamic organization of the retino-thalamo-hyper- striatal pathway in the pigeon ( Columba livia ), Exp.Brain Res. 19: 351–364.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, W.J.H., and Karten, H.J., 1970. A general profile of the vertebrate brain with sidelights on the ancestry of cerebral cortex, in “The Neurosciences: 2nd Study Programme”, (F.O. Schmitt, ed.), pp. 7–26, Rockefeller University Press, New York.

    Google Scholar 

  • Reperant, J., 1973, Nouvelles données sur les projections visuelles chez le pigeon ( Columba livia), J. Hirnforschung. 14: 151–187.

    CAS  Google Scholar 

  • Reubi, J.C., and Cuénod, M., 1976, Release of exogenous glycine in the pigeon optic tectum during stimulation of a midbrain nucleus, Brain Res. 112: 347–361.

    Article  PubMed  CAS  Google Scholar 

  • Schonbach, J., Schonbach, C., and Cueéod, M., 1971, Rapid phase of axoplasmic flow and synaptic proteins: An electron microscopical autoradiographic study, J. Comp. Neur. 141: 485–498.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S.H., Yamamura, H.I., Pert, C.B., Logan, W.J., and Bennett, J.P., 1973, Neuronal uptake of neurotransmitters and their precursors in studies with ‘transmitter’ amino acids and choline, in “New Concepts in Neurotransmitter Regulation”, ( A.J. Mandell, ed.), pp. 195–222, Plenum Press, New York.

    Chapter  Google Scholar 

  • Storm-Mathisen, J., 1977, Glutamic acid and excitatory nerve endings: reduction of glutamic acid uptake after axotomy, Brain Res. 120: 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., and Guldberg, H.C., 1974, 5-Hydrosytryptamine and noradrenaline in the hippocampal region: Effect of transection of afferent pathways on endogenous levels, high affinity uptake and some transmitter-related enzymes, J.Neurochem. 22: 793–803.

    Article  PubMed  CAS  Google Scholar 

  • Streit, P., and Reubi, J.C., 1977, A new and sensitive staining method for axonally transported horseradish peroxidase (HRP) in the pigeon visual system, Brain Res. 126: 530–537.

    Article  PubMed  CAS  Google Scholar 

  • Webster, K.E., 1974. Changing concepts of the organization of the central visual pathways in birds, in “Essays on the nervous system”, (R. Bellairs, and E.G. Gray, eds.), pp. 258–298, Clarendon Press, Oxford.

    Google Scholar 

  • Yates, R.A., and Roberts, P.J., 1974, Effects of enucleation and intra-ocular colchicine on the amino acids of frog optic tectum, J. Neurochem. 23: 891–893.

    Article  PubMed  CAS  Google Scholar 

  • Young, A.B., and Snyder, S.H., 1973, Strychnine binding associated with glycine receptors of the central nervous system, Proc. Nat. Acad. Sci. Vol.70, 10: 2832–2836.

    Article  PubMed  CAS  Google Scholar 

  • Zukin, S.R., Young, A.B., and Snyder, S.H., 1975, Development of the synaptic glycine receptor in chick embryo spinal cord, Brain Res. 83: 525–530.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Cuénod, M., Henke, H. (1978). Neurotransmitters in the Avian Visual System. In: Fonnum, F. (eds) Amino Acids as Chemical Transmitters. NATO Advanced Study Institutes Series, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4030-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4030-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4032-4

  • Online ISBN: 978-1-4613-4030-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics