Skip to main content

Significance and Functions of Silicon in Warm-Blooded Animals. Review and Outlook

  • Chapter
Biochemistry of Silicon and Related Problems

Part of the book series: Nobel Foundation Symposia ((NOFS,volume 40))

Summary

Some earlier research and the developments which led to the discovery of the essentiality of silicon for warm blooded animals are reviewed, and pitfalls in the methodology of silicon determination in biological material are described with special reference to germanium as an interfering factor in the ammonium molybdate reaction. Previous work from our laboratory on the occurrence of bound silicon in connective tissue components such as glycosaminoglycans is reviewed. It was based partially on results obtained with materials which were contaminated by silica or polysilicic acid. The total amount of silicon in ground matrix and connective tissue is smaller than assumed earlier. Thus, the hypothesis that silicon acts as a cross-linking agent in the ground matrix may have to be modified. Silicic acid derivatives may function in this fashion in special organelles such as base membranes, micro-tubules, etc. In the formation of organic silic acid derivatives, i.e., silanolates or silicic acid esters, not only the hydroxyl groups of carbohydrate derivatives, but also the hydroxyamino acids or other hydroxyl groups may serve as potential carriers of the silicic acid residue. In such structures, donation of electrons by amino N, leading to penta- or hexa-coordinated derivatives may have a stabilizing effect.

A number of model compounds based primarily on bifunctional alcohols such as substituted propanediol or butanediol have been prepared. The trimethoxy and triethoxy silanes containing a silicic acid moiety at each hydroxyl group, and also the corresponding cyclic derivatives containing only one silicic acid moiety connecting both alcoholic hydroxyl groups were obtained. Some of these showed enhanced biological activity when compared to sodium metasilicate in the growth assay on rats maintained in silicon-free environmental systems. An enzyme, silicase, was discovered in pancreas, stomach and also kidney which liberates silicic acid from a synthetic substrate, trimethoxy dodecanoxy silane. The enzyme has been prepared in concentrated form and some of its properties are described. It normally occurs in membrane bound form in mitochondria and microsomes. It can be liberated by non-ionic detergents, is inactivated by removal of lipid and reactivated by treatment with appropriate triglycerides. As an example of the possible involvement of silicon in disease mechanisms, data are presented on the silicon contents of dietary fiber, and also of water samples from various areas of Finland, which support the concept that lack of silicon may be an etiological factor in atherosclerosis.

“Effects of silicic acid are destined to play a great and major role in therapy.” Louis Pasteur June 13, 1878

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schulz, H, Pflügers Arch 1902, 89, 112; 1910, 131, 447; 1912, 144, 346, Münch med Wochenschr 1902, Nr 11, Sonderdruck.

    Article  CAS  Google Scholar 

  2. Gonnermann, M, Hoppe-Seyler Z Physiol Chem 1917, 99, 255; Biochemische Z 1919, 94, 165.

    Article  CAS  Google Scholar 

  3. Kühn, A, Die Kieselsaure. Stuttgart, 1926.

    Google Scholar 

  4. Kochmann, M & Maier, L, Biochem Z 1930, 223, 243.

    CAS  Google Scholar 

  5. Voronkov, M G, Zelchan, G I & Lukevitz, E, Silizium und Leben (ed K Rühlmann). Akademie-Verlag, Berlin, 1975.

    Google Scholar 

  6. Charnot, A, Maroc med 1953, 589 and 1313.

    Google Scholar 

  7. Howard, A N, Proc 9th int congr nutr, Mexico 1972, vol. 1, 340. Karger, Basel, 1975.

    Google Scholar 

  8. Loeper, J & Loeper, J, Compt rend soc biol 1961, 155, 468.

    CAS  Google Scholar 

  9. Kühn, A, Münch med Wochenschr 1972, 68, 1616.

    Google Scholar 

  10. Schwarz, K & Foltz, C M, J Am chem soc 1957, 79, 3292.

    Article  CAS  Google Scholar 

  11. Schwarz, K & Mertz, W, Arch biochem biophys 1959, 85, 292.

    Article  PubMed  CAS  Google Scholar 

  12. Schwarz, K, Milne D B & Vinyard, E, Biochem biophys res comm 1970, 40, 22.

    Article  PubMed  CAS  Google Scholar 

  13. Schwarz, K & Milne, D B, Science 1971, 174, 425.

    Article  Google Scholar 

  14. Schwarz, K & Milne, D B, Bioinorg Chem 1972, 1, 331.

    Article  Google Scholar 

  15. Schwarz, K & Milne, D B, Nature 1972, 239, 333.

    Article  PubMed  CAS  Google Scholar 

  16. Schwarz, K, Fed proc 1974, 33, 17k8.

    Google Scholar 

  17. Schwarz, K, Clinical chemistry and chemical toxicology of metals (ed S S Brown), p. 3, Elsevier/North-Holland, Amsterdam, 1977.

    Google Scholar 

  18. Milne, D B, Schwarz, K & Sognnaes, R, Fed proc 1973, 31, 700.

    Google Scholar 

  19. Carlisle, E M, Science 1970, 167, 279.

    Article  PubMed  CAS  Google Scholar 

  20. Carlisle, E M, Science 1972, 178, 619.

    Article  PubMed  CAS  Google Scholar 

  21. Carlisle, E M, Fed proc 1972, 31, 700.

    Google Scholar 

  22. Schwarz, K, Nuclear activation techniques in the life sciences, p. 3. International Atomic Energy Agency, Vienna, 1972.

    Google Scholar 

  23. Grebennikov, E P, Soroko, V R & Sabadash, E V, Voprosy pitanija 1963, 22, 87.

    CAS  Google Scholar 

  24. McGavack, T, Leslie, J & Tang Kao, K, Proc soc exp biol med 1962, 110, 215.

    CAS  Google Scholar 

  25. Baumann, H, Hoppe-Seyler Z physiol chem 1960, 319, 38.

    Article  PubMed  CAS  Google Scholar 

  26. Binks, R, Goodfellow, R J, MacMillan, J & Price, R J, Chem & ind 1970, 568.

    Google Scholar 

  27. Komarowsky, A S & Poluektoff, N S, Mikrochemie 1935, 18, 66.

    Article  Google Scholar 

  28. Cotton, F A & Wilkinson, G, Advanced inorganic chemistry, p. 941. Interscience, New York, London and Sydney, 1966.

    Google Scholar 

  29. Underwood, E J, Trace elements in human and animal nutrition, 4th edn, p. 439. Academic Press, New York, 1977.

    Google Scholar 

  30. Brown, S S, Clinical chemistry and chemical toxicology of metals (ed S S Brown), p. 381. Elsevier, North-Holland, Amsterdam, 1977.

    Google Scholar 

  31. Schwarz, K, Proc natl acad sci 1973, 70, 1608.

    Article  PubMed  CAS  Google Scholar 

  32. Morris, J N, Crawford, M D & Heady, J A, Lancet 1961, 1, 860.

    Article  PubMed  CAS  Google Scholar 

  33. Schwarz, K & Chen, S C, Fed proc 1974, 33, 704.

    Google Scholar 

  34. LeVier, R R, Bioinorg Chem 1975, 4, 109.

    Article  PubMed  CAS  Google Scholar 

  35. Masironi, R, Bull world health org 1970, 42, 103.

    PubMed  CAS  Google Scholar 

  36. Halsted, J A, Am j clin nutr 1968, 21, 1384.

    PubMed  CAS  Google Scholar 

  37. Bruhn, C M & Pangborn, R M, J Am dietet A 1971, 58, 417. See also Marcia Cooper, Pica, a survey of the historical literature. Charles E. Thomas, Springfield, IL, 1957.

    CAS  Google Scholar 

  38. Burkitt, D P, Walker, A R P & Painter, N A, J Am med assoc 1974, 229, 1068.

    Article  CAS  Google Scholar 

  39. Trowell, H, Am j clin nutr 1972, 25, 926.

    PubMed  CAS  Google Scholar 

  40. Walker, A R P & Arvidsson, U B, J clin invest 1954, 33, 1358.

    Article  PubMed  CAS  Google Scholar 

  41. Higginson, J & Pepler, W J, J clin invest 1954, 33, 1366.

    Article  PubMed  CAS  Google Scholar 

  42. Bersohn, I, Walker, A R P & Higginson, J, S Afr med j 1956, 30, 411.

    Google Scholar 

  43. Hardinge, M G & Stare, F, J Am j clin nutr 1954, 2, 83.

    CAS  Google Scholar 

  44. Hardinge, M G, Chambers A C, Crooks, H & Stare, F J, Am j clin nutr 1958, 6, 523.

    PubMed  CAS  Google Scholar 

  45. Wells, A F & Ershoff, B H, J nutr 1961, 74, 87.

    CAS  Google Scholar 

  46. Schwarz, K, Lancet, 1977, 1, 454.

    Article  PubMed  CAS  Google Scholar 

  47. Schwarz, K, Lancet 1959, 1, 1012.

    Google Scholar 

  48. Schwarz, K, WHO Chronicle 1973, 26, 51.

    Google Scholar 

  49. Schwarz, K, Ricci, B A, Punsar, S & Karvonen, M J, Lancet 1977, 1, 538.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Schwarz, K. (1978). Significance and Functions of Silicon in Warm-Blooded Animals. Review and Outlook. In: Bendz, G., Lindqvist, I., Runnström-Reio, V. (eds) Biochemistry of Silicon and Related Problems. Nobel Foundation Symposia, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4018-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4018-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4020-1

  • Online ISBN: 978-1-4613-4018-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics