Advertisement

Some Recent Advances in Neutrino Physics

  • A. K. Mann

Abstract

One answer to questions concerning the subject matter of elementary particle physics and its position within the physical sciences is that particle physics is the study of creation. To justify this idea, at least in part, consider the “big bang” model of creation of the universe. In that model the primeval fireball involved very high temperatures, estimated to be greater than 1011 degrees Kelvin (°K), which is to be compared with the interior temperature of the sun at about 107 degrees Kelvin. We believe the sun to be a nuclear furnace, generating its energy by individual nuclear interactions in the million electron volt (MeV) energy range. In the “big bang” the energies involved in the individual particle interactions would have been more than 104 times larger than in the sun, and thus in the tens of giga-electron volts (GeV). This is precisely the energy region of present-day high energy or elementary particle physics laboratory experiments. In this sense, then, laboratory experiments that study, even indirectly, lepton-lepton scattering or quark-quark interactions are revisiting creation.

Keywords

Transverse Momentum Charged Lepton Neutrino Physics Neutrino Interaction Muon Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    D.H. Perkins, Proc. XVI Int’l. Conf. on High Energy Physics, Chicago-Batavia, J.D. Jackson and A. Roberts, eds., Vol. 4, p. 189, 1972.Google Scholar
  2. 2).
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967) and 27, 1688 (1972); Phys. Rev. D5, 1421 (1972); A. Salam and J.C. Ward, Phys. Lett. 13, 168 (1964).ADSCrossRefGoogle Scholar
  3. 3).
    See, for example, the talk by J.D. Bjorken at the Ben Lee Memorial Int’l. Conference on Parity Nonconservation, Weak Neutral Currents and Gauge Theories, FNAL, October, 1977.Google Scholar
  4. 4).
    G. Myatt, Proc. Sixth Int’l. Symposium on Electron and Photon Interactions at High Energies, Bonn, 1973, H. Rollnik and W. Pfell, eds. (North-Holland, Amsterdam, 1974), p. 389.Google Scholar
  5. 5).
    F.J. Hasert et al., Phys. Lett. 46B, 138 (1973).ADSGoogle Scholar
  6. 6).
    A. Benvenuti et al., Phys. Rev. Lett. 32, 800 (1974).Google Scholar
  7. 7).
    B.C. Barish et al., Phys. Rev. Lett. 34, 538 (1975).ADSCrossRefGoogle Scholar
  8. 8).
    M. Holder et al., CERN preprint, August (1977).Google Scholar
  9. 9).
    Data from the ANL-Carnegie Mellon-Purdue collaboration presented by A.F. Garfinkel at the 1977 Int’l. Symposium on Lepton and Photon Interactions at High Energies, Hamburg (1977).Google Scholar
  10. 10).
    P. Musset, Review talk given at the 1977 Int’l. Symposium on Lepton and Photon Interactions at High Energies, Hamburg (1977).Google Scholar
  11. 11).
    A. Benvenuti et al., Phys. Rev. Lett. 37, 1039 (1976); P. Wanderer et al., HPWF preprint 77/1 (1977), submitted to Phys. Rev. D.ADSCrossRefGoogle Scholar
  12. 12).
    See, for example, J.D. Bjorken, Proc. of Summer Institute on Particle Physics, November, 1976, C. Zipf, ed., SLAC Report No. 198; L.M. Sehgal, Aachen preprint (1977); P.Q. Hung and J.J. Sakurai, preprint UCLA/77/TEP/17 (1977).Google Scholar
  13. 13).
    W.R. Innes et al., Phys. Rev. Lett. 39, 1240 (1977).ADSCrossRefGoogle Scholar
  14. 14).
    W. Lee et al., Phys. Rev. Lett. 37, 186 (1976).ADSCrossRefGoogle Scholar
  15. 15).
    D. Cline et al., Phys. Rev. Lett. 37, 252, 648 (1976).ADSCrossRefGoogle Scholar
  16. 16).
    Data presented at the Ben Lee Memorial Int’l. Conference on Parity Nonconservation, Weak Neutral Currents and Gauge Theories, FNAL, October, 1977.Google Scholar
  17. 17).
    C.H. Albright, C. Quigg, R.E. Schrock and J. Smith, Phys. Rev. D14, 1780 (1976).ADSGoogle Scholar

References

  1. 1).
    B. Aubert et al., Phys. Rev. Lett. 33, 984 (1974).ADSCrossRefGoogle Scholar
  2. 2).
    A. Benvenuti et al., Phys. Rev. Lett. 36, 1476 (1976).ADSCrossRefGoogle Scholar
  3. 3).
    A.K. Mann, in New Pathways in High Energy Physics II, A. Perlmutter, ed. (Plenum Press, 1976).Google Scholar
  4. 4).
    M. Holder et al., CERN preprint [since published in Phys. Rev. Lett. 39, 433 (1977)].Google Scholar

References

  1. 1).
    For an account of early experimental evidence from neutrino and e+e- interactions see, for example, G. Feldman and A.K. Mann McGraw-Hill Yearbook of Science and Technology, 1977.Google Scholar
  2. 2).
    B. Aubert et al., in Neutrinos — 1974 (AIP Conf. Proc. No. 22, 1974), C. Baltay, ed.; B. Aubert et al., in Proc. XVII Int’l. Conf. on High Energy Physics, London, 1974, J.R. Smith, ed.; A. Benvenuti et al., Phys. Rev. Lett. 34, 419 (1975); 35, 1199 and 1249 (1975).Google Scholar
  3. 3).
    B.C. Barish et al., Phys. Rev. Lett. 36, 939 (1976); 39, 981 (1977).ADSCrossRefGoogle Scholar
  4. 4).
    J. von Krogh et al., Phys. Rev. Lett. 36, 710 (1976).ADSCrossRefGoogle Scholar
  5. 5).
    J. Blietschau et al., Phys. Lett. 60B, 207 (1976).ADSGoogle Scholar
  6. 6).
    A. Benvenuti et al., Phys. Rev. Lett. 35, 1203 (1975).ADSCrossRefGoogle Scholar
  7. 7).
    L.N. Chang, E. Derman and J.N. Ng, Phys. Rev. Lett. 35, 6 (1975); A. Pais and S.B. Treiman, Phys. Rev. Lett. 35, 1206 (1975).ADSCrossRefGoogle Scholar
  8. 8).
    A. Benvenuti et al., Phys. Rev. Lett. 38, 1110 and 1183 (1977). Also preprint entitled “Further Observation of Trimuon Production by Neutrinos and Antineutrinos”, submitted to Phys. Rev. Lett.ADSCrossRefGoogle Scholar
  9. 9).
    B.C. Barish et al., Phys. Rev. Lett. 38, 377 (1977).MathSciNetCrossRefGoogle Scholar
  10. 10).
    A. Skuja, R. Stefanski, and A. Windelbon, FNAL Technical Note TM469 (1974).Google Scholar
  11. 11).
    R. Stefanski and H.B. White, FNAL Technical Note TM626A (1976).Google Scholar
  12. 12).
    D.A. Edwards and F.J. Sciulli, FNAL Technical Note TM660 (1976).Google Scholar
  13. 13).
    See, for example, L.M. Sehgal and P.M. Zerwas, Phys. Rev. Lett. 36, 399 (1976).ADSCrossRefGoogle Scholar
  14. 14).
    L.M. Sehgal and P.M. Zerwas, Nucl. Phys. B108, 483 (1976); E. Derman, Nucl. Phys. B110, 40 (1976); V. Barger et al., Phys. Rev. D16, 746 (1977); Phys. Lett. 70B, 51 (1977).ADSCrossRefGoogle Scholar
  15. 15).
    M.L. Perl et al, SLAC-PUB 1997, LBL 6731, Aug. 1977, submitted to Phys. Lett.Google Scholar
  16. 16).
    C. Baltay et al., Phys. Rev. Lett. 39, 62 (1977).ADSCrossRefGoogle Scholar
  17. 17).
    M. Holder et al., Phys. Lett. 69B, 377 (1977).ADSGoogle Scholar
  18. 18).
    H.H. Bingham in Conf. Proc. Neutrino-77 Conference, Elbrus, USSR, (June, 1977).Google Scholar
  19. 19).
    See, for example, J. Smith and J.A.M. Vermaseren, Preprint ITP-SB-77-66 (Nov., 1977); V. Barger, T. Gottschalk and R.J.N. Phillips, Preprint COO-881-9 (Nov., 1977).Google Scholar
  20. 20).
    K.J. Anderson et al., Phys. Rev. Lett. 37, 799 (1976).ADSCrossRefGoogle Scholar
  21. 21).
    We use results from C.H. Albright, J. Smith and J.A.M. Vermaseren, Phys. Rev. Lett. 38, 1187 (1977). An extensive list of references on possible trimuon origins is given in a talk by V. Barger, at the Ben Lee Memorial Conference, FNAL (Oct., 1977), Preprint COO-881-7.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • A. K. Mann
    • 1
  1. 1.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations