Comparison of Library Search Methods with Binary Encoded Steroid Mass Spectra

  • K. Varmuza

Abstract

A library of 524 low resolution steroid mass spectra was used to compare different methods of binary enconding and different similarity criteria. Recognition of spectra in the library was tested with a) noisy mass spectra, b) artificial mass spectra from steroid mixtures and c) actually recorded mass spectra. Best recognition rates were achieved by two methods: 1. Binary encoded mass spectra which contain 2 largest peaks in mass intervals of 14 mass units and a similarity criterion that does not consider peak heights. 2. Binary encoded mass spectra which contain only peaks above a threshold of 2 to 10% base peak and an “exclusive or” dissimilarity criterion.

Keywords

Cholesterin Petroleum Hydrocortisone Testosterone Estradiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    S.L. Grotch, Anal. Chem., 1970, 42, 1214.CrossRefGoogle Scholar
  2. 2).
    H.S. Hertz, R.A. Hites and K. Biemann, Anal. Chem., 1971, 43, 681.CrossRefGoogle Scholar
  3. 3).
    R.G. Ridley, in “Biochemical Applications of Mass Spectrometry”, G.R. Waller, Ed., Wiley, New York, 1972, p. 177.Google Scholar
  4. 4).
    D.H. Robertson and C.Jr. Merritt, in “Adavances in Mass Spectrometry”, Vol. 6, A.R. West, Ed., The Institute of Petroleum, London, 1974, p. 1011.Google Scholar
  5. 5).
    S.L. Grotch, Anal. Chem., 1971, 43, 1362.CrossRefGoogle Scholar
  6. 6).
    K. Varmuza, Fresenius Z. Anal. Chem., 1976, 282, 129.CrossRefGoogle Scholar
  7. 7).
    G. Spiteller, “Steroid Mass Spectra Library”, Göttingen, 1975.Google Scholar
  8. 8).
    K. Varmuza, Fresenius Z. Anal. Chem., 1977, in press.Google Scholar
  9. 9).
    K. Varmuza, to be published, 1977.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • K. Varmuza
    • 1
  1. 1.Institute for General ChemistryUniversity of Technology ViennaLehargasse 4Austria

Personalised recommendations