Specific Ion Detection of Aryloxy Beta Blocking Drugs for Metabolic Fate Determinations-Applications to Alprenolol in Rats and Dogs

  • T. Walle
  • K. Walle


As the number of adrenergic beta-blocking drugs with potential usefulness in man rapidly increases, the need to expand our knowledge of these agents also increases. An improved insight into the biological fate of these drugs is necessary to be able to understand the actions they produce, both beneficial and maybe also toxic. It is known, for example, that several beta-blocking drugs produce pharmacologically active metabolites. A metabolites of propranolol with intact beta-blocking side-chain, 4-hydroxy- propranolol, is equipotent to propranolol as a beta-blocker in animals (1) and would appear to contribute to the effects of propranolol in man (2, 3). Other metabolites of propranolol, such as the glycollic and N-desalkylated metabolites, have also been shown to possess pharmacologic activity (4–6), metabolites which would be expected to be common to beta-blocking drugs in general.


Phenolic Metabolite Ring Oxidation Benzene Extract Allyl Oxidation Biological Fate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    J.D. Fritzgerald and S.R. O’Donnel, Brit. J. Pharmacol.,1971, 43, 222.Google Scholar
  2. 2).
    D.J. Coltart and D.J. Shand, Brit. Med. J., 1970, 3, 731.CrossRefGoogle Scholar
  3. 3).
    T. Walle, E. Conradi, K. Walle, T. Fagan and T.E. Gaffney, Clin. Res., 1977, 25, 10A.Google Scholar
  4. 4).
    D.A. Saelens, T. Walle, P.J. Privitera, D.R. Knapp and T.E. Gaffney, J. Pharmacol. Exp. Ther., 1974, 188, 86.Google Scholar
  5. 5).
    D.A. Saelens, T. Walle, T.E. Gaffney and P.J. Privitera, Eur. J. Pharmacol., 1977, 42, 39.CrossRefGoogle Scholar
  6. 6).
    H.R. Ing and W.E. Ormerod, J. Pharm. Pharmacol., 1952, 4, 21.CrossRefGoogle Scholar
  7. 7).
    D.A. Garteiz and T. Walle, J. Pharm. Sei., 1972, 61, 1728.CrossRefGoogle Scholar
  8. 8).
    T. Walle, J. Pharm. Sei., 1974, 63, 1885.CrossRefGoogle Scholar
  9. 9).
    T. Walle, J. Morrison, K. Walle and E. Conradi, J. Chromatogr., 114, 351.Google Scholar
  10. 10).
    D.A. Saelens, T. Walle and P.J. Privitera, J. Chromatog., 123, 185.Google Scholar
  11. 11).
    N.-O. Bodin, Life Sci., 1974, 14, 685.CrossRefGoogle Scholar
  12. 12).
    P. Borchert, P.G. Wislocki, J.A. Miller and E.C. Miller, Cancer Res., 1973, 33, 575.Google Scholar
  13. 13).
    T. Walle and T.E. Gaffney, J. Pharmacol. Exp. Ther., 1972, 182, 83.Google Scholar
  14. 14).
    G.L. Tindell, T. Walle and T.E. Gaffney, Life Sei., Part II, 11, 1029.Google Scholar
  15. 15).
    T. Walle, J.I. Morrison and G.L. Tindell, Res. Commun. Chem. Pathol. Pharmacol., 1974, 9, 1.Google Scholar
  16. 16).
    B. Åblad, M. Brogård and H. Corrodi, Acta Pharm. Suec., 1970, 7, 551.Google Scholar
  17. 17).
    P.G. Wislocki, “On the proximate and ultimate carcinogenic metabolites of precarcinogens: Safrole and certain N-alkyl-aminoazobenzene dyes”, Dissertation, Univ. of Wisconsin- Madison, Abstr. in Dissertation Abstracts, 1974, 36, 219-B.Google Scholar
  18. 18).
    W.G. Stillwell, J. Carman, L. Bell and M.G. Horning, Drug Metab. Disp., 1974, 2 , 489.Google Scholar
  19. 19).
    J.A. Miller and E.C. Miller, in “Biological Reactive Intermediates: Formation, toxicity and inactivation”, D.J. Jollow, J.J. Kocsis, R. Snyder and H. Vainio, Eds., Plenum Press, New York, 1977, p. 6.Google Scholar
  20. 20).
    T. Walle, Fed. Proceed., 1977, 36 , 961.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • T. Walle
    • 1
  • K. Walle
    • 1
  1. 1.Department of PharmacologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations