Skip to main content
  • 612 Accesses

Abstract

The approximate overall heat transfer coefficient U can be determined from the following equation:

$$\frac{1}{U}=\frac{1}{h_{\text{i}}}+F_{\text{i}}+\frac{l_{\text{w}}}{k_{\text{w}}}+F_{\text{o}}+\frac{1}{h_{\text{o}}}$$
(7.1)

where U is the overall heat transfer coefficient [Btu/(ft2-hr-°F)]; h i is the inside film coefficient [Btu/(ft2-hr-°F)]; F i is the inside fouling factor [(ft2-hr-°F)/Btu]. l w is the wall thickness (ft); k w is the thermal conductivity of the wall [(Btu-ft)/(ft2-hr-°F)]; F o is the outside fouling factor [(ft2-hr-°F)/Btu]; h o is the outside film coefficient [Btu/(ft2-hr-°F)]. A graphical representation of the various terms is shown in Figure 8.1. In Figure 8.1, the fouling factors F i and F o are expressed as L i/k i and L o/k o.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfaudler Heat Exchanger Data Book, Bulletin 1056, Pfaudler Division, Ritter Pfaudler Corporation, Rochester, New York, 1967, pp. 9–10.

    Google Scholar 

  2. Standards of Tubular Exchanger Manufacturers Association, 5th ed., New York, 1968, pp. 124–127.

    Google Scholar 

  3. Dowtherm Heat Transfer Fluids, Dow Chemical Co., Midland, Michigan, 1971, p. 104.

    Google Scholar 

  4. E. E. Ludwig, Applied Process Design for Chemical and Petrochemical Plants, Vol. 3, Gulf Publishing Co., Houston, Texas, 1965, p. 61.

    Google Scholar 

  5. Platecoil Catalog No. 5–63, Platecoil Division, Tranter Manufacturing, Inc., Lansing, Michigan, 1974, p. 68.

    Google Scholar 

  6. P. D. Shroff, Chem. Processing No. 4, 60–61 (1960).

    Google Scholar 

  7. Platecoil Catalog No. 5–63, Platecoil Division, Tranter Manufacturing, Inc., Lansing, Michigan, 1974, p. 70.

    Google Scholar 

  8. W. H. Holstein, What it costs to steam and electrically trace pipelines, Chem. Eng. Prog. 62, 107 (1966).

    Google Scholar 

  9. F. S. Chapman and F. A. Holland, Keeping piping hot, Chem. Eng., December 20, 80–81 (1965).

    Google Scholar 

  10. D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950, p. 102.

    Google Scholar 

  11. D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950, pp. 221–245, 835.

    Google Scholar 

  12. E. E. Ludwig, Applied Process Design for Chemical and Petrochemical Plants, Vol. 3, Gulf Publishing Co., Houston, Texas, 1965, pp. 24, 135.

    Google Scholar 

  13. Engineering Data Book Section, Wolverine Division, Universal Oil Products, Inc., 1961, pp. 74–78.

    Google Scholar 

  14. Standards of Tubular Exchanger Manufacturers Association, 5th ed., New York, 1968, pp. 129–130.

    Google Scholar 

  15. D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950, p. 718.

    Google Scholar 

  16. Pfaud:-r RA Series Glasteel Reactors, Bulletin 1086, Pfaudler Co., Division of Sybron Corp., Rochester, New York, 1976, pp. 6–7.

    Google Scholar 

  17. D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950, p. 747.

    Google Scholar 

  18. D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950, pp. 453–491.

    Google Scholar 

  19. E. E. Ludwig, Applied Process Design for Chemical and Petrochemical Plants, Vol. 3, Gulf Publishing Co., Houston, Texas, 1965, p. 120.

    Google Scholar 

  20. The Physics of Process Vapor Condenser Construction, The Andale Co., Bulletin 351, Philadelphia, Pennsylvania, 1935.

    Google Scholar 

  21. D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950, pp. 267, 338.

    Google Scholar 

  22. E. E. Ludwig, Applied Process Design for Chemical and Petrochemical Plants, Vol. 3, Gulf Publishing Co., Houston, Texas, 1965, pp. 81, 89.

    Google Scholar 

  23. A. P. Colburn, Trans. AICHE 30, 187 (1934).

    Google Scholar 

  24. J. E. Lerner, Simplified air cooler estimating, Hydrocarbon Processing, February, 93–100 (1972).

    Google Scholar 

  25. D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950, pp. 624–631.

    Google Scholar 

Selected Reading: Heat Transfer Coefficients and Fundamentals

  • N. H. Chen, Method to find tubeside heat transfer coefficient, Chem. Eng. June 30 (1958).

    Google Scholar 

  • N. H. Chen, Save time in heat exchanger design, Chem. Eng. October 20 (1958).

    Google Scholar 

  • N. H. Chen, Tubeside heat transfer coefficients for gases and vapors, Chem. Eng. January 12 (1959).

    Google Scholar 

  • N. H. Chen, Condensing and boiling heat transfer coefficients, Chem. Eng. March 9 (1959).

    Google Scholar 

  • Century Heat Exchanger Tube Manual, Century Brass Products, Waterbury, Conn. (1977).

    Google Scholar 

  • O. Frank, Estimating overall heat transfer coefficients, Chem. Eng. May 13 (1974).

    Google Scholar 

  • E. E. Ludwig, Applied Process Design for Chemical and Petro-Chemical Plants, Vol. 3, Gulf Publishing Co., Houston, Texas, 1965.

    Google Scholar 

  • R. H. Perry and C. H. Chilton, Chemical Engineers’ Handbook, 5th ed., McGraw-Hill, New York, 1973.

    Google Scholar 

  • Pfaudler Heat Exchanger Data Book, Bulletin 1056, Pfaudler Division, Ritter Pfaudler Corporation, Rochester, New York, 1967.

    Google Scholar 

  • P. D. Shroff, Chemical Processing, No. 4, 60–61 (1960).

    Google Scholar 

  • Standards of Tubular Exchanger Manufacturers Association, 5th ed. New York, 1968.

    Google Scholar 

  • Heat Losses from Insulated Pipelines

    Google Scholar 

  • F. S. Chapman and F. A. Holland, Keeping piping hot, Chem. Eng. December 20 (1965).

    Google Scholar 

  • W. H. Holstein, What it costs to steam and electrically trace pipelines, Chem. Eng. Prog., Vol. 62, No. 3, March (1966).

    Google Scholar 

Selected Reading: Double Pipe Exchangers

  • J. P. Holman, Heat Transfer, 3rd ed., McGraw-Hill, New York, 1972.

    Google Scholar 

  • D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950.

    Google Scholar 

  • Shell and Tube Heat Exchangers

    Google Scholar 

  • Engineering Data Book Section, Wolverine Div., Universal Oil Products, Inc., 1961.

    Google Scholar 

  • J. P. Holman, Heat Transfer, 3rd ed., McGraw-Hill, New York, 1972.

    Google Scholar 

  • D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950.

    Google Scholar 

  • E. E. Ludwig, Applied Process Design for Chemical and Petrochemical Plants, Vol. 3, Gulf Publishing Co., Houston, Texas, 1967.

    Google Scholar 

  • W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954.

    Google Scholar 

  • Standards of Tubular Exchanger Manufacturers Association, 5th ed., New York, 1968.

    Google Scholar 

Selected Reading: Heat Transfer Coefficient in Agitated Vessels

  • E. J. Ackley, Film coefficients of heat transfer for agitated process vessels, Chem. Eng., August 22 (1960).

    Google Scholar 

  • Bulletin 1086, Pfaudler RA Series Glasteel Reactors, Pfaudler Co., Division of Sybron Corp., Rochester, New York, 1976.

    Google Scholar 

  • F. S. Chapman and F. A. Holland, Heat-transfer correlations for agitated liquids in process vessels, Chem. Eng. January 18, 1965.

    Google Scholar 

  • F. S. Chapman and F. A. Holland, Heat transfer correlations in jacketed vessels, Chem. Eng. February 15 (1965).

    Google Scholar 

  • T. H. Chilton, T. B. Drew, and R. H. Jebens, Heat transfer coefficients in agitated vessels, Ind. Eng. Chem. Vol. 36, No. 6, June (1944).

    Google Scholar 

  • G. H. Cummings and A. S. West, Heat transfer data for kettles with jackets and coils, Ind. Eng. Chem. Vol. 42, No. 11, November (1950).

    Google Scholar 

  • D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950.

    Google Scholar 

  • W. R. Penney and K. J. Bell, Close clearance agitators, Ind. Eng. Chem. Vol. 59, No. 4, April (1967).

    Google Scholar 

Selected Reading: Reboilers and Vaporizers

  • G. K. Collins, Horizontal thermosiphon reboiler design, Chem. Eng. July 19 (1976).

    Google Scholar 

  • J. R. Fair, What you need to design thermosiphon reboilers, Petroleum Refiner, Vol. 29, No. 2, February (1960).

    Google Scholar 

  • O. Frank and R. D. Prickett, Designing vertical thermosiphon reboilers, Chem. Eng. September 3 (1973).

    Google Scholar 

  • D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950.

    Google Scholar 

  • E. E. Ludwig, Applied Process Design for Chemical and Petrochemical Plants, Vol. 3, Gulf Publishing Co., Houston, Texas, 1965.

    Google Scholar 

  • J. W. Palen and W. M. Small, A new way to-design kettle and internal reboilers, Hydrocarbon Processing, Vol. 43, No. 11, November (1964).

    Google Scholar 

Selected Reading: Condensers

  • The Andale Co., Bulletin 351, The Physics of Process Vapor Condenser Construction, Philadelphia, Pa., 1935.

    Google Scholar 

  • K. J. Bell, Temperature profiles in condensers, Chem. Eng. Prog. Vol. 63, No. 7, July (1972).

    Google Scholar 

  • A. P. Colburn, Trans. AIChE, Vol. 30, 187 (1934).

    Google Scholar 

  • W. Gloyer, Thermal design of mixed vapor condensers, Part 1 and Part 2, Hydrocarbon Processing, June (1970).

    Google Scholar 

  • D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950.

    Google Scholar 

  • E. E. Ludwig, Applied Process Design for Chemical and Petrochemical Plants, Vol. 3, Gulf Publishing Co., Houston, Texas, 1965.

    Google Scholar 

  • D. E. Steinmeyer, Fog formation in partial condensers, Chem. Eng. Prog. Vol. 68, No. 7, July (1972).

    Google Scholar 

  • D. E. Steinmeyer and A. C. Mueller, Why condensers don’t operate as they are supposed to, Chem. Eng. Prog. Vol. 70, No. 7, July (1974).

    Google Scholar 

Selected Reading: Air-Cooled Heat Exchangers

  • Air cooled heat exchange, Chem. Eng. Prog. Vol. 55, No. 4, April (1959).

    Google Scholar 

  • G. M. Franklin and W. B. Munn, Problems with heat exchangers in low temperature environments, Chem. Eng. Prog. Vol. 70, No. 7, July (1974).

    Google Scholar 

  • A. Y. Gunter and K. V. Shipes, Hot air recirculation by air coolers, Chem. Eng. Prog. Vol. 68, No. 2, February (1972).

    Google Scholar 

  • J. E. Lerner, Simplified air cooler estimating, Hydrocarbon Processing, February (1972).

    Google Scholar 

  • K. V. Shipes, Air-cooled exchangers in cold climates, Chem. Eng. Prog. Vol. 70, No. 7, July (1974).

    Google Scholar 

Selected Reading: Unsteady-State Heat Transfer

  • T. R. Brown, Heating and cooling in batch processes, Chem. Eng. May 28 (1973).

    Google Scholar 

  • S. H. Davis and W. W. Akers, Unsteady state heat transfer-I, Chem. Eng. April 18 (1960).

    Google Scholar 

  • S. H. Davis and W. W. Akers, Unsteady state heat transfer-II, Chem. Eng. May 16 (1960).

    Google Scholar 

  • D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York, 1950.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Aerstin, F., Street, G. (1978). Heat Transfer. In: Applied Chemical Process Design. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3976-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3976-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3978-6

  • Online ISBN: 978-1-4613-3976-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics