Skip to main content

The Organization of Central Catecholamine Neuron Systems

  • Chapter

Abstract

In the late 1900’s, three phenomena gave great impetus to the study of the morphology of the nervous system: first, the evolution of the neuron doctrine; second, the development of powerful techniques for the analysis of neural structure; third, the prominence of the concept of localization of function. A natural consequence of the development of the neuron doctrine was the concept of the synapse, which, in turn, required that some mechanism be established by which information is transmitted from one nerve cell to another or from a nerve cell to an effector cell. The history of the development of the concept of chemical transmission at the synapse is too well known to be recounted here. Of particular importance for this review was the establishment of noradrenaline as the sympathetic neurotransmitter by von Euler (1946). This was followed by the landmark work of Vogt (1954) demonstrating that noradrenaline and adrenaline are present in brain with a distinct regional distribution that is independent of the sympathetic innervation of the CNS. Numerous subsequent studies have refined these observations, but it was not until the development of a specific and sensitive histochemical method for the intracellular demonstration of catecholamines (Falck et al, 1962; Falck, 1962; Carlsson et al, 1962; for a review, cf. Corrodi and Jonsson, 1967) that a precise analysis of central catecholarnine (CA) neuron systems could be carried out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajika, K., and Hökfelt, T., 1973, Ultrastructural identification of catecholamine neurones in the hypothalamus periventricular-arcuate nucleus-median eminence complex with special reference to quantitative aspects, Brain Res. 57:97–117.

    PubMed  CAS  Google Scholar 

  • Ajika, K., and Hökfelt, T., 1975, Projections to the median eminence and the arcuate nucleus with special reference to monoamine systems: Effects of lesions, Cell Tissue Res. 158:15–35.

    PubMed  CAS  Google Scholar 

  • Andén, N.-E., Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.-Å., and Larsson, K., 1964, Demonstration and mapping out of nigro-neostriatal dopamine neurons, Life Sci. 3:523–530.

    PubMed  Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., and Larsson, K., 1965, Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat, Am. J. Anat. 116:329–334.

    PubMed  Google Scholar 

  • Andén, N.-E., Fuxe, K., Hamberger, B., and Hökfelt, T., 1966a, A quantitative study of the nigro-neostriatal dopamine neurons system in the rat, Acta Physiol. Scand. 67:306–312.

    PubMed  Google Scholar 

  • Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966b, Ascending monoamine neurons to the telencephalon and diencephalon, Acta. Physiol. Scand. 67:313–326.

    Google Scholar 

  • Baumgarten, H. G., Björklund, A., Holstein, A. F., and Nobin, A., 1972, Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary, Z. Zellforsch. 126:483–517.

    PubMed  CAS  Google Scholar 

  • Bedard, P., Larochelle, L., Parent, A., and Poirier, L. J., 1969, The nigrostriatal pathway: A correlative study based on neuroanatomical and neurochemical criteria in the cat and the monkey, Exp. Neurol. 25:365–377.

    PubMed  CAS  Google Scholar 

  • Berger, B., Thierry, A. M., Tassin, J. P., and Moyre, M. A., 1976, Dopaminergic innervation of the rat prefrontal cortex: A fluorescence histochemical study, Brain Res. 106:133–145.

    PubMed  CAS  Google Scholar 

  • Bertler, Å., and Rosengren, E., 1959, Occurrence and distribution of catecholamines in brain, Acta Physiol. Scand. 47:350–361.

    PubMed  CAS  Google Scholar 

  • Björklund, A., and Moore, R. Y., 1978, The Central Adrenergic Neuron, Raven Press, New York, in press.

    Google Scholar 

  • Björklund, A., and Nobin, A., 1973, Fluorescence histochemical and microspectrofluorometric mapping of dopamine, and noradrenaline cell groups in the rat diencephalon, Brain Res. 51:193–205.

    PubMed  Google Scholar 

  • Björklund, A., Falck, B., Hromek, F., Owman, C., and West, K. A., 1970, Identification and terminal distribution of the tubero-hypophyseal monoamine fibre systems in the rat by means of stereotaxic and microspeetrofluorimetric techniques, Brain Res. 17:1–23.

    PubMed  Google Scholar 

  • Björklund, A., Moore, R. Y., Nobin, A., and Stenevi, U., 1973, The organization of tubero-hypophyseal and reticulo-influndibular catecholamine neuron systems in the rat brain, Brain Res. 51:171–191.

    PubMed  Google Scholar 

  • Björklund, A., Lindvall, O., and Nobin, A., 1975, Evidence of an incerto-hypothalamie dopamine neurone system in the rat, Brain Res. 89:29–42.

    PubMed  Google Scholar 

  • Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1971, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses, Brain Res. 25:501–521.

    PubMed  CAS  Google Scholar 

  • Brodal, A., 1969, Neurological Anatomy, 2nd Ed., Oxford University Press, New York.

    Google Scholar 

  • Carlsson, A., Falck, B., and Hillarp, N.-Å., 1962, Cellular localization of brain monoamines, Acta Physiol. Scand. 56(suppl.) 196:1–28.

    Google Scholar 

  • Carlsson, A., Dahlstrom, A., Fuxe, K., and Hillarp, N.-Å., 1964, Cellular localization of monoamines in the spinal cord, Acta Physiol. Scand. 60:112–119.

    PubMed  CAS  Google Scholar 

  • Carpenter, M. B., and Peter, P., 1972, Nigrostriatal and nigrothalamic fibers in the rhesus monkey, J. Comp. Neurol. 139:259–272.

    Google Scholar 

  • Chu, N.-S., and Bloom, F. E., 1974, The catecholamine-containing neurons in the cat dorsolateral pontine tegmentum: Distribution of the cell bodies and some axonal projections, Brain Res. 66:1–21.

    Google Scholar 

  • Ciaranello, R. D., Barchas, R. E., Byers, G. S., Stemmle, D. W., and Barchas, J. D., 1969, Enzymatic synthesis of adrenaline in mammalian brain, Nature (London) 221:368–369.

    CAS  Google Scholar 

  • Corrodi, H., and Jonsson, G., 1967. The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology, J. Histochem. Cytochem. 15:65–78.

    CAS  Google Scholar 

  • Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62(Suppl. 232): 1–55.

    Google Scholar 

  • Dahlström, A., and Fuxe, K., 1965, Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of the bulbospinal neuron systems, Acta Physiol. Scand. 64(Suppl. 247):1–36.

    Google Scholar 

  • Descarries, L., Beaudet, A., and Watkins, K. C., 1975, Serotonin nerve terminals in adult rat neocortex, Brain Res. 100:563–588.

    PubMed  CAS  Google Scholar 

  • Descarries, L., Watkins, K. C., and Lapierre, Y., 1977, Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis, Brain Res., in press.

    Google Scholar 

  • DiCarlo, V., Hubbard, J. E., and Pate, P., 1973, Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimuiri sciureus). IV. An atlas, J. Comp. Neurol. 152:347–372.

    CAS  Google Scholar 

  • Dowling, J. E., and Ehinger, B., 1975, Synaptic organization of the amine-containing interplex-iform cells of the goldfish and Cebus monkey retinas, Nature (London) 188:270–273.

    CAS  Google Scholar 

  • Dupin, J. C., Descarries, L., and de Champlain, J., 1976, Radioautographic visualization of central catecholamine neurons in newborn rat after intravenous administration of tritiated norepinephrine, Brain Res. 103:588–596.

    PubMed  CAS  Google Scholar 

  • Ehinger, B., 1966a, Distribution of adrenergic nerves in the eye and some related structures in the cat, Acta Physiol. Scand. 66:123–128.

    PubMed  CAS  Google Scholar 

  • Ehinger, B., 1966b, Adrenergic nerves to the eyes and to related structures in man and in the cynomolgus monkey (Macaca irus), Invert. Ophthalmol. 5:42–52.

    Google Scholar 

  • Ehinger, B., 1966c, Adrenergic retinal neurons, Z. Zellforsch. 71:146–152.

    Google Scholar 

  • Ehinger, B., and Falck, B., 1969, Adrenergic retinal neurons of some New World monkeys, Z. Zellforsch. 100:364–375.

    PubMed  CAS  Google Scholar 

  • Ehinger, B., Falck, B., and Laties, A. M., 1969, Adrenergic neurons in teleost retina, Z. Zellforsch. 97:285–297.

    PubMed  CAS  Google Scholar 

  • Ehringer, H., and Hornykiewicz, O., 1960, Verteilung von Noradrenalin und Dopamine (3-Hydroxytyramine) in Gehim des Menschen und ihr Verhalten bei Erkrankungen des extrapiramidalen Systems, Klin. Wochenschr. 38:1236–1239.

    PubMed  CAS  Google Scholar 

  • Falck, B., 1962, Observations on the possibilities of the cellular localization of monoamines by a fluorescence method, Acta Physiol. Scand. 56(Suppl. 197): 1–25.

    Google Scholar 

  • Falck, B., Hillarp, N.-Å., Thieme, G., and Torp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10:348–354.

    CAS  Google Scholar 

  • Fallon, J. H., and Moore, R. Y., 1976a, Catecholamine neuron innervation of the rat amygdala, Anat. Rec. 184:399.

    Google Scholar 

  • Fallon, J. H., and Moore, R. Y., 1976b, Dopamine innervation of some basal forebrain areas in the rat, Neurosci. Abstr., 2(Part 1):486.

    Google Scholar 

  • Felten, D., Laties, A., and Carpenter, M., 1974, Localization of monoamine-containing cell bodies in the squirrel monkey brain, Am. J. Anat. 138:153–166.

    Google Scholar 

  • Ferraro, A., 1928, The connections of the pars suboculomotoria of the substantia nigra, Arch. Neurol. Psychiatry (Chicago) 19:177–180.

    Google Scholar 

  • Freedman, R., Foote, S. L., and Bloom, F. E., 1975, Histochemical characterization of a neocortical projection of the nucleus locus coeruleus in the squirrel monkey, J. Comp. Neurol. 164:209–232.

    PubMed  CAS  Google Scholar 

  • Fuxe, K., 1963, Cellular localization of monoamines in the median eminence and in the infundibular stem of some mammals, Acta Physiol. Scand. 58:383–384.

    PubMed  CAS  Google Scholar 

  • Fuxe, K., 1964, Cellular localization of monamines in the median eminence and in the infundibular stem of some mammals, Z. Zellforsch. 61:710–724.

    PubMed  CAS  Google Scholar 

  • Fuxe, K., 1965a, Evidence for the existence of monoamine-containing neurons in the central nervous system. III. The monoamine nerve terminal, Z. Zellforsch. 65:572–596.

    Google Scholar 

  • Fuxe, K., 1965b, Evidence for the existence of monoamine-containing neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system, Acta Physiol. Scand. 64(Suppl. 247):39–85.

    Google Scholar 

  • Fuxe, K., and Hökfelt, T., 1966, Further evidence for the existence of tuberoinfundibular dopamine neurons, Acta Physiol. Scand. 66:243–244.

    Google Scholar 

  • Fuxe, K., Hökfelt, T., and Ungerstedt, U., 1970, Morphological and functional aspects of central monoamine neurons, Int. Rev. Neurobiol. 13:93–126.

    CAS  Google Scholar 

  • Garver, D. L., and Sladek, J. R., Jr., 1975, Monoamine distribution in primate brain. I. Catecholamine-containing perikarya in the brain stem of Macaca speciosa, J. Comp. Neurol. 159:289–304.

    PubMed  CAS  Google Scholar 

  • Greenfield, J. G., 1963, Paralysis agitans (Parkinson’s disease), in: Greenfield’s Neuropathology (W. Blackwood, A. Meyer, R. M. Norman, W. H. McMenemey, and D. S. Russell, eds.), pp. 582–584, Arnold, London.

    Google Scholar 

  • Gunne, L.-M., 1962, Relative adrenaline content in brain tissue, Acta Physiol. Scand. 56:324–333.

    PubMed  CAS  Google Scholar 

  • Hartman, B. K., 1973, Immunofluorescence of dopamine-β-hydroxylase. Application of improved methodology to the localization of the peripheral and central noradrenergic nervous system, J. Histochem. Cytochem. 21:312–332.

    PubMed  CAS  Google Scholar 

  • Hattori, T., Fibiger, H. C., McGeer, P. L., and Maler, L., 1973, Analysis of the fine structure of the dopaminergic nigrostriatal projection by electron microscopic autoradiography, Exp. Neurol. 41:599–611.

    PubMed  CAS  Google Scholar 

  • Hillarp, N.-Å., Fuxe, K., and Dahlström, A., 1966, Demonstration and mapping of central neurons containing dopamine, noradrenaline and 5-hydroxytryptamine and their reactions to psychopharmaca, Pharm. Rev. 18:727–741.

    PubMed  CAS  Google Scholar 

  • Hökfelt, T., 1967, Electron microscopic studies on brain slices from regions rich in catecholamine nerve terminals, Acta, Physiol. Scand. 69:119–120.

    Google Scholar 

  • Hökfelt, T., 1968, In vitro studies on central and peripheral monoamine neurons at the ultrastructural level, Z. Zellforsch. 91:1–74.

    PubMed  Google Scholar 

  • Hökfelt, T., and Ljungdahl, Å., 1972, Modification of the Falck-Hillarp formaldehyde fluorescence method using the Vibratome: Simple, rapid and sensitive localization of catecholamines in sections of unfixed or formalin fixed brain tissue, Histochemie 29:325–339.

    PubMed  Google Scholar 

  • Hökfelt, T., and Ungerstedt, U., 1969, Electron and fluorescence microscopical studies on the nucleus caudatus putamen of the rat after unilateral lesions of nigro-neostriatal dopamine neurons, Acta Physiol. Scand. 76:415–426.

    PubMed  Google Scholar 

  • Hökfelt, T., Fuxe, K., Goldstein, M., and Johansson, O., 1973, Evidence for adrenaline neurons in the rat brain, Acta Physiol. Scand. 89:286–288.

    PubMed  Google Scholar 

  • Hökfelt, T., Fuxe, K., Goldstein, M., and Johansson, O., 1974a, Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain, Brain Res. 66:235–251.

    Google Scholar 

  • Hökfelt, T., Fuxe, K., Johansson, O., and Ljungdahl, Å., 1974b, Pharmacohistochemical evidence of the existence of dopamine nerve terminals in the limbic cortex, Eur. J. Pharmacol. 25:108–112.

    PubMed  Google Scholar 

  • Hubbard, J. E., and DiCarlo, V., 1973, Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). I. The locus coeruleus, J. Comp. Neurol. 147:553–565.

    PubMed  CAS  Google Scholar 

  • Jacobowitz, D. M., and Palkovits, M., 1974, Topographic atlas of catecholamine-and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon), J. Comp. Neurol. 157:13–28.

    PubMed  CAS  Google Scholar 

  • Jones, B. E., and Moore, R. Y., 1974, Catecholamine-containing neurons of the nucleus locus coeruleus in the cat, J. Comp. Neurol. 157:43–52.

    PubMed  CAS  Google Scholar 

  • Jones, B. E., and Moore, R. Y., 1977, Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study, Brain Res. 127:23–53.

    Google Scholar 

  • Jones, B. E., Halaris, A. E., McIlhany, M., and Moore, R. Y., 1977, Ascending projections of the locus coeruleus in the rat. I. Axonal transport in central noradrenaline neurons, Brain Res. 127:1–22.

    PubMed  CAS  Google Scholar 

  • Jonsson, G., Fuxe, K., and Hökfelt, T., 1972, On the catecholamine innervation of the hypothalamus, with special reference to the median eminence, Brain Res. 40:271–281.

    PubMed  CAS  Google Scholar 

  • Koslow, S. H., and Schlumpf, M., 1974, Quantitation of adrenaline in rat brain nuclei and areas by mass fragmentography, Nature (London) 251:530–531.

    CAS  Google Scholar 

  • Kromer, L. F., and Moore, R. Y., 1976, Cochlear nucleus innervation by central norepinephrine neurons in the rat, Brain Res. 118:531–537.

    PubMed  CAS  Google Scholar 

  • Kuypers, H. G. J. M., and Maisky, V. A., 1975, Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat, Neuro sci. Lett. 1:9–14.

    CAS  Google Scholar 

  • Laties, A. M., and Jacobowitz, D., 1966, A comparative study of the autonomic innervation of the eye in monkey, cat, and rabbit, Anat. Rec. 156:383–396.

    PubMed  CAS  Google Scholar 

  • Lindvall, O., 1975, Mesencephalic dopaminergic afferents to the lateral septal nucleus of the rat, Brain Res. 87:89–95.

    PubMed  CAS  Google Scholar 

  • Lindvall, O., and Björklund, A., 1974a, The glyoxylic acid fluroescence histochemical method: A detailed account of the methodology for the visualization of central catecholamine neurons, Histochemie. 39:97–127.

    CAS  Google Scholar 

  • Lindvall, O., and Björklund, A., 1974b, The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method, Acta Physiol. Scand. Suppl. 412:1–48.

    PubMed  CAS  Google Scholar 

  • Lindvall, O., and Björklund, A., 1978, Organization of catecholamine neurons in the rat central nervous system, in: Handbook of Psychopharmacology (L. Iversen, S. Iverson, and S. H. Snyder, eds.), Vol. 9, Ch. 4, Plenum Press, New York, in press.

    Google Scholar 

  • Lindvall, O., Björklund, A., Hökfelt, T., and Ljungdahl, A., 1973, Application of the glyoxylic acid method to Vibratome sections for the improved visualization of central catecholamine neurons, Histochemie 35:31–38.

    PubMed  CAS  Google Scholar 

  • Lindvall, O., Björklund, A., Moore, R. Y., and Stenevi, U., 1974a, Mesencephalic dopamine neurons projecting to neocortex, Brain Res. 81:325–331.

    PubMed  CAS  Google Scholar 

  • Lindvall, O., Björklund, A., Nobin, A., and Stenevi, U., 1974b, The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method, J. Comp. Neurol. 154:317–348.

    PubMed  CAS  Google Scholar 

  • Llamas, A., Reinoso-Suarez, F., and Martinez-Moreno, E., 1975, Projections to the gyrus proreus from the brain stem tegmentum (locus coeruleus, raphe nuclei) in the cat, demonstrated by retrograde transport of horseradish peroxidase, Brain Res. 89:331–336.

    PubMed  CAS  Google Scholar 

  • Lorén, I., Björklund, A., Falck, B., and Lindvall, O., 1976, An improved histofluorescence procedure for freeze-dried paraffin-embedded tissue based on combined formaldehyde-glyoxylic acid perfusion with high magnesium content and acid pH, Histochemistry 49:177–192.

    PubMed  Google Scholar 

  • Lorente de No’, R., 1949, Cerebral cortex: Architecture, intracortical connections, motor projections, in: Physiology of the Nervous System, (J. Fulton, ed.), 3rd Ed., pp. 288–312, Oxford University Press, New York.

    Google Scholar 

  • Maeda, T., and Shimizu, N., 1972, Projections ascendentes du locus coeruleus et e’autres neurones aminergiques pontiques au niveau de prosencephale du rat, Brain Res. 36:19–35.

    PubMed  CAS  Google Scholar 

  • Maler, L., Fibirger, H. C., and McGeer, P. L., 1973, Demonstration of the nigrostriatal projection by silver staining after nigral injections of 6-hydroxydopamine, Exp. Neurol. 40:505–515.

    PubMed  CAS  Google Scholar 

  • Malmfors, T., 1963, Evidence of adrenergic neurons with synaptic terminals in the retina of rats demonstrated with fluorescence and electron microscopy, Acta Physiol. Scand. 58:99–100.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., 1977, Catecholamine innervation of the basal forebrain. I. The septal area, J. Comp. Neurol., in press.

    Google Scholar 

  • Moore, R. Y., Bhatnagar, R. K., and Heller, A., 1971, Anatomical and chemical studies of a nigro-neostriatal projection in the cat, Brain Res. 30:119–135.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., Björklund, A., and Stenevi, U., 1974, Growth and plasticity of adrenergic neurons, in: The Neurosciences-Third Study Program (F. O. Schmitt and F. G. Worden, eds.), pp. 961–977, MIT Press, Cambridge.

    Google Scholar 

  • Mugnaini, E., and Dahl, A.-L., 1975, Mode of distribution of aminergic fibers in the cerebellar cortex of the chicken, J. Comp. Neurol. 162:417–432.

    PubMed  CAS  Google Scholar 

  • Nobin, A., and Björklund, A., 1973, Topography of the monoamine neuron systems in the human brain as revealed in fetuses, Acta. Physiol. Scand. Suppl. 388:1–40.

    PubMed  CAS  Google Scholar 

  • Olson, L., and Fuxe, K., 1971, On the projections from the locus coeruleus noradrenaline neurons: The cerebellar innervation, Brain Res. 28:165–171.

    PubMed  CAS  Google Scholar 

  • Olson, L., Borens, L. O., and Seiger, A., 1973, Histochemical demonstration and mapping of 5-hydroxytryptamine-and catecholamine-containing neuron systems in the human fetal brain, Z. Anat. Entwicklungsgesch. 139:259–282.

    PubMed  CAS  Google Scholar 

  • Palkovits, M., and Jacobowitz, D. M., 1974, Topographic atlas of catecholamine-and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon), J. Comp. Neurol. 157:29–42.

    PubMed  CAS  Google Scholar 

  • Pickel, V. M., Segal, M., and Bloom, F. E., 1974, An radioautographic study of the efferent pathways of the nucleus locus coeruleus, J. Comp. Neurol. 155:15–42.

    PubMed  CAS  Google Scholar 

  • Pohorecky, L. A., Zigmond, M., Karten, H., and Wurtman, R. J., 1969, Enzymatic conversion of norepinephrine to epinephrine by the brain, J. Pharmacol. Exp. Ther. 165:190–195.

    PubMed  CAS  Google Scholar 

  • Reid, J. L., Zivin, J. A., Foppen, F. H., and Kopin, I. J., 1975, Catecholamine neurotransmitters and synthetic enzymes in the spinal cord of the rat, Life Sci. 16:975–984.

    PubMed  CAS  Google Scholar 

  • Reid, J. L., Zivin, J. A., and Kopin, I. J., 1976, The effects of spinal cord transsection and intracistemal 6-hydroxydopamine on phenylethanolamine-N-methyl transferase (PNMT) activity in rat brain stem and spinal cord, J. Neurochem. 26:629–631.

    PubMed  CAS  Google Scholar 

  • Russell, G. V., 1955, The nucleus locus coeruleus (dorsal lateralis tegmenti), Tex. Rep. Biol. Med. 13:939–988.

    PubMed  CAS  Google Scholar 

  • Saavedra, J. M., Palkovits, M., Brownstein, M. J., and Axelrod, J., 1974, Localization of phenylethanolamine N-methyl transferase in the rat brain nuclei, Nature (London) 248:695–696.

    CAS  Google Scholar 

  • Scheibel, M. E., and Scheibel, A. B., 1957, Structural substrates for integrative patterns in the brain stem reticular core, in: Reticular Formation of the Brain, (H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Moseley, and R. T. Costello eds.), pp. 31–55, Little, Brown and Co., Boston.

    Google Scholar 

  • Seiger, Å., and Olson, L., 1973, Late prenatal ontogeny of central monoamine neurons in the rat: Fluorescence histochemical observations, Z. Anat. Entwicklungsgesch. 140:281–318.

    PubMed  CAS  Google Scholar 

  • Shimizu, N., and Ohnishi, S., 1973, Demonstration of nigro-neostriatal tract by degeneration silver method, Exp. Brain Res. 17:133–138.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., 1976, The locus coeruleus: A cytoarchitectonic, Golgi and immunohistochemical study in the albino rat, Brain Res. 110:39–56.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., and Hartman, B. K., 1975, The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-β-hydroxylase as a marker, J. Comp. Neurol. 163:467–506.

    PubMed  CAS  Google Scholar 

  • Thierry, A. M., Blane, G., Sobel, A., Stinus, L., and Glowinski, J., 1973a, Dopaminergic terminals in the rat cortex, Science 182:499–501.

    PubMed  CAS  Google Scholar 

  • Thierry, A. M., Stinus, L., Blane, G., and Glowinski, J., 1973b, Some evidence for the existence of dopaminergic neurons in the rat cortex, Brain Res. 50:230–234.

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U., 1971, Stereotaxic mapping of the monamine pathways in the rat brain, Acta. Physiol. Scand. Suppl. 367:1–48.

    PubMed  CAS  Google Scholar 

  • Van der Gugten, J., Palkovits, M., Wijen, H. L. J. M., and Versteeg, D. H. G., 1976, Regional distribution of adrenaline in rat brain, Brain Res. 107:171–175.

    PubMed  Google Scholar 

  • Vogt, M., 1954, The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs, J. Physiol. (London) 123:451–481.

    CAS  Google Scholar 

  • von Euler, U. S., 1946, A specific sympathomimetic ergone in adrenergic nerve fibers (sympathin) and its relation to adrenaline and noradrenaline, Acta Physiol. Scand. 12:73–96.

    Google Scholar 

  • Zivin, J. A., Reid, J. L., Saavedra, J. M., and Kopin, I. J., 1975, Quantitative localization of biogenic amines in the spinal cord, Brain Res. 99:293–301.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Moore, R.Y., Kromer, L.F. (1978). The Organization of Central Catecholamine Neuron Systems. In: Haber, B., Aprison, M.H. (eds) Neuropharmacology and Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3961-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3961-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3963-2

  • Online ISBN: 978-1-4613-3961-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics