The Organization of Central Catecholamine Neuron Systems



In the late 1900’s, three phenomena gave great impetus to the study of the morphology of the nervous system: first, the evolution of the neuron doctrine; second, the development of powerful techniques for the analysis of neural structure; third, the prominence of the concept of localization of function. A natural consequence of the development of the neuron doctrine was the concept of the synapse, which, in turn, required that some mechanism be established by which information is transmitted from one nerve cell to another or from a nerve cell to an effector cell. The history of the development of the concept of chemical transmission at the synapse is too well known to be recounted here. Of particular importance for this review was the establishment of noradrenaline as the sympathetic neurotransmitter by von Euler (1946). This was followed by the landmark work of Vogt (1954) demonstrating that noradrenaline and adrenaline are present in brain with a distinct regional distribution that is independent of the sympathetic innervation of the CNS. Numerous subsequent studies have refined these observations, but it was not until the development of a specific and sensitive histochemical method for the intracellular demonstration of catecholamines (Falck et al, 1962; Falck, 1962; Carlsson et al, 1962; for a review, cf. Corrodi and Jonsson, 1967) that a precise analysis of central catecholarnine (CA) neuron systems could be carried out.


Ventral Tegmental Area Locus Coeruleus Dopamine Neuron Neuron System Median Eminence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajika, K., and Hökfelt, T., 1973, Ultrastructural identification of catecholamine neurones in the hypothalamus periventricular-arcuate nucleus-median eminence complex with special reference to quantitative aspects, Brain Res. 57:97–117.PubMedGoogle Scholar
  2. Ajika, K., and Hökfelt, T., 1975, Projections to the median eminence and the arcuate nucleus with special reference to monoamine systems: Effects of lesions, Cell Tissue Res. 158:15–35.PubMedGoogle Scholar
  3. Andén, N.-E., Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.-Å., and Larsson, K., 1964, Demonstration and mapping out of nigro-neostriatal dopamine neurons, Life Sci. 3:523–530.PubMedGoogle Scholar
  4. Andén, N.-E., Dahlström, A., Fuxe, K., and Larsson, K., 1965, Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat, Am. J. Anat. 116:329–334.PubMedGoogle Scholar
  5. Andén, N.-E., Fuxe, K., Hamberger, B., and Hökfelt, T., 1966a, A quantitative study of the nigro-neostriatal dopamine neurons system in the rat, Acta Physiol. Scand. 67:306–312.PubMedGoogle Scholar
  6. Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966b, Ascending monoamine neurons to the telencephalon and diencephalon, Acta. Physiol. Scand. 67:313–326.Google Scholar
  7. Baumgarten, H. G., Björklund, A., Holstein, A. F., and Nobin, A., 1972, Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary, Z. Zellforsch. 126:483–517.PubMedGoogle Scholar
  8. Bedard, P., Larochelle, L., Parent, A., and Poirier, L. J., 1969, The nigrostriatal pathway: A correlative study based on neuroanatomical and neurochemical criteria in the cat and the monkey, Exp. Neurol. 25:365–377.PubMedGoogle Scholar
  9. Berger, B., Thierry, A. M., Tassin, J. P., and Moyre, M. A., 1976, Dopaminergic innervation of the rat prefrontal cortex: A fluorescence histochemical study, Brain Res. 106:133–145.PubMedGoogle Scholar
  10. Bertler, Å., and Rosengren, E., 1959, Occurrence and distribution of catecholamines in brain, Acta Physiol. Scand. 47:350–361.PubMedGoogle Scholar
  11. Björklund, A., and Moore, R. Y., 1978, The Central Adrenergic Neuron, Raven Press, New York, in press.Google Scholar
  12. Björklund, A., and Nobin, A., 1973, Fluorescence histochemical and microspectrofluorometric mapping of dopamine, and noradrenaline cell groups in the rat diencephalon, Brain Res. 51:193–205.PubMedGoogle Scholar
  13. Björklund, A., Falck, B., Hromek, F., Owman, C., and West, K. A., 1970, Identification and terminal distribution of the tubero-hypophyseal monoamine fibre systems in the rat by means of stereotaxic and microspeetrofluorimetric techniques, Brain Res. 17:1–23.PubMedGoogle Scholar
  14. Björklund, A., Moore, R. Y., Nobin, A., and Stenevi, U., 1973, The organization of tubero-hypophyseal and reticulo-influndibular catecholamine neuron systems in the rat brain, Brain Res. 51:171–191.PubMedGoogle Scholar
  15. Björklund, A., Lindvall, O., and Nobin, A., 1975, Evidence of an incerto-hypothalamie dopamine neurone system in the rat, Brain Res. 89:29–42.PubMedGoogle Scholar
  16. Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1971, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses, Brain Res. 25:501–521.PubMedGoogle Scholar
  17. Brodal, A., 1969, Neurological Anatomy, 2nd Ed., Oxford University Press, New York.Google Scholar
  18. Carlsson, A., Falck, B., and Hillarp, N.-Å., 1962, Cellular localization of brain monoamines, Acta Physiol. Scand. 56(suppl.) 196:1–28.Google Scholar
  19. Carlsson, A., Dahlstrom, A., Fuxe, K., and Hillarp, N.-Å., 1964, Cellular localization of monoamines in the spinal cord, Acta Physiol. Scand. 60:112–119.PubMedGoogle Scholar
  20. Carpenter, M. B., and Peter, P., 1972, Nigrostriatal and nigrothalamic fibers in the rhesus monkey, J. Comp. Neurol. 139:259–272.Google Scholar
  21. Chu, N.-S., and Bloom, F. E., 1974, The catecholamine-containing neurons in the cat dorsolateral pontine tegmentum: Distribution of the cell bodies and some axonal projections, Brain Res. 66:1–21.Google Scholar
  22. Ciaranello, R. D., Barchas, R. E., Byers, G. S., Stemmle, D. W., and Barchas, J. D., 1969, Enzymatic synthesis of adrenaline in mammalian brain, Nature (London) 221:368–369.Google Scholar
  23. Corrodi, H., and Jonsson, G., 1967. The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology, J. Histochem. Cytochem. 15:65–78.Google Scholar
  24. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62(Suppl. 232): 1–55.Google Scholar
  25. Dahlström, A., and Fuxe, K., 1965, Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of the bulbospinal neuron systems, Acta Physiol. Scand. 64(Suppl. 247):1–36.Google Scholar
  26. Descarries, L., Beaudet, A., and Watkins, K. C., 1975, Serotonin nerve terminals in adult rat neocortex, Brain Res. 100:563–588.PubMedGoogle Scholar
  27. Descarries, L., Watkins, K. C., and Lapierre, Y., 1977, Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis, Brain Res., in press.Google Scholar
  28. DiCarlo, V., Hubbard, J. E., and Pate, P., 1973, Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimuiri sciureus). IV. An atlas, J. Comp. Neurol. 152:347–372.Google Scholar
  29. Dowling, J. E., and Ehinger, B., 1975, Synaptic organization of the amine-containing interplex-iform cells of the goldfish and Cebus monkey retinas, Nature (London) 188:270–273.Google Scholar
  30. Dupin, J. C., Descarries, L., and de Champlain, J., 1976, Radioautographic visualization of central catecholamine neurons in newborn rat after intravenous administration of tritiated norepinephrine, Brain Res. 103:588–596.PubMedGoogle Scholar
  31. Ehinger, B., 1966a, Distribution of adrenergic nerves in the eye and some related structures in the cat, Acta Physiol. Scand. 66:123–128.PubMedGoogle Scholar
  32. Ehinger, B., 1966b, Adrenergic nerves to the eyes and to related structures in man and in the cynomolgus monkey (Macaca irus), Invert. Ophthalmol. 5:42–52.Google Scholar
  33. Ehinger, B., 1966c, Adrenergic retinal neurons, Z. Zellforsch. 71:146–152.Google Scholar
  34. Ehinger, B., and Falck, B., 1969, Adrenergic retinal neurons of some New World monkeys, Z. Zellforsch. 100:364–375.PubMedGoogle Scholar
  35. Ehinger, B., Falck, B., and Laties, A. M., 1969, Adrenergic neurons in teleost retina, Z. Zellforsch. 97:285–297.PubMedGoogle Scholar
  36. Ehringer, H., and Hornykiewicz, O., 1960, Verteilung von Noradrenalin und Dopamine (3-Hydroxytyramine) in Gehim des Menschen und ihr Verhalten bei Erkrankungen des extrapiramidalen Systems, Klin. Wochenschr. 38:1236–1239.PubMedGoogle Scholar
  37. Falck, B., 1962, Observations on the possibilities of the cellular localization of monoamines by a fluorescence method, Acta Physiol. Scand. 56(Suppl. 197): 1–25.Google Scholar
  38. Falck, B., Hillarp, N.-Å., Thieme, G., and Torp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10:348–354.Google Scholar
  39. Fallon, J. H., and Moore, R. Y., 1976a, Catecholamine neuron innervation of the rat amygdala, Anat. Rec. 184:399.Google Scholar
  40. Fallon, J. H., and Moore, R. Y., 1976b, Dopamine innervation of some basal forebrain areas in the rat, Neurosci. Abstr., 2(Part 1):486.Google Scholar
  41. Felten, D., Laties, A., and Carpenter, M., 1974, Localization of monoamine-containing cell bodies in the squirrel monkey brain, Am. J. Anat. 138:153–166.Google Scholar
  42. Ferraro, A., 1928, The connections of the pars suboculomotoria of the substantia nigra, Arch. Neurol. Psychiatry (Chicago) 19:177–180.Google Scholar
  43. Freedman, R., Foote, S. L., and Bloom, F. E., 1975, Histochemical characterization of a neocortical projection of the nucleus locus coeruleus in the squirrel monkey, J. Comp. Neurol. 164:209–232.PubMedGoogle Scholar
  44. Fuxe, K., 1963, Cellular localization of monoamines in the median eminence and in the infundibular stem of some mammals, Acta Physiol. Scand. 58:383–384.PubMedGoogle Scholar
  45. Fuxe, K., 1964, Cellular localization of monamines in the median eminence and in the infundibular stem of some mammals, Z. Zellforsch. 61:710–724.PubMedGoogle Scholar
  46. Fuxe, K., 1965a, Evidence for the existence of monoamine-containing neurons in the central nervous system. III. The monoamine nerve terminal, Z. Zellforsch. 65:572–596.Google Scholar
  47. Fuxe, K., 1965b, Evidence for the existence of monoamine-containing neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system, Acta Physiol. Scand. 64(Suppl. 247):39–85.Google Scholar
  48. Fuxe, K., and Hökfelt, T., 1966, Further evidence for the existence of tuberoinfundibular dopamine neurons, Acta Physiol. Scand. 66:243–244.Google Scholar
  49. Fuxe, K., Hökfelt, T., and Ungerstedt, U., 1970, Morphological and functional aspects of central monoamine neurons, Int. Rev. Neurobiol. 13:93–126.Google Scholar
  50. Garver, D. L., and Sladek, J. R., Jr., 1975, Monoamine distribution in primate brain. I. Catecholamine-containing perikarya in the brain stem of Macaca speciosa, J. Comp. Neurol. 159:289–304.PubMedGoogle Scholar
  51. Greenfield, J. G., 1963, Paralysis agitans (Parkinson’s disease), in: Greenfield’s Neuropathology (W. Blackwood, A. Meyer, R. M. Norman, W. H. McMenemey, and D. S. Russell, eds.), pp. 582–584, Arnold, London.Google Scholar
  52. Gunne, L.-M., 1962, Relative adrenaline content in brain tissue, Acta Physiol. Scand. 56:324–333.PubMedGoogle Scholar
  53. Hartman, B. K., 1973, Immunofluorescence of dopamine-β-hydroxylase. Application of improved methodology to the localization of the peripheral and central noradrenergic nervous system, J. Histochem. Cytochem. 21:312–332.PubMedGoogle Scholar
  54. Hattori, T., Fibiger, H. C., McGeer, P. L., and Maler, L., 1973, Analysis of the fine structure of the dopaminergic nigrostriatal projection by electron microscopic autoradiography, Exp. Neurol. 41:599–611.PubMedGoogle Scholar
  55. Hillarp, N.-Å., Fuxe, K., and Dahlström, A., 1966, Demonstration and mapping of central neurons containing dopamine, noradrenaline and 5-hydroxytryptamine and their reactions to psychopharmaca, Pharm. Rev. 18:727–741.PubMedGoogle Scholar
  56. Hökfelt, T., 1967, Electron microscopic studies on brain slices from regions rich in catecholamine nerve terminals, Acta, Physiol. Scand. 69:119–120.Google Scholar
  57. Hökfelt, T., 1968, In vitro studies on central and peripheral monoamine neurons at the ultrastructural level, Z. Zellforsch. 91:1–74.PubMedGoogle Scholar
  58. Hökfelt, T., and Ljungdahl, Å., 1972, Modification of the Falck-Hillarp formaldehyde fluorescence method using the Vibratome: Simple, rapid and sensitive localization of catecholamines in sections of unfixed or formalin fixed brain tissue, Histochemie 29:325–339.PubMedGoogle Scholar
  59. Hökfelt, T., and Ungerstedt, U., 1969, Electron and fluorescence microscopical studies on the nucleus caudatus putamen of the rat after unilateral lesions of nigro-neostriatal dopamine neurons, Acta Physiol. Scand. 76:415–426.PubMedGoogle Scholar
  60. Hökfelt, T., Fuxe, K., Goldstein, M., and Johansson, O., 1973, Evidence for adrenaline neurons in the rat brain, Acta Physiol. Scand. 89:286–288.PubMedGoogle Scholar
  61. Hökfelt, T., Fuxe, K., Goldstein, M., and Johansson, O., 1974a, Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain, Brain Res. 66:235–251.Google Scholar
  62. Hökfelt, T., Fuxe, K., Johansson, O., and Ljungdahl, Å., 1974b, Pharmacohistochemical evidence of the existence of dopamine nerve terminals in the limbic cortex, Eur. J. Pharmacol. 25:108–112.PubMedGoogle Scholar
  63. Hubbard, J. E., and DiCarlo, V., 1973, Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). I. The locus coeruleus, J. Comp. Neurol. 147:553–565.PubMedGoogle Scholar
  64. Jacobowitz, D. M., and Palkovits, M., 1974, Topographic atlas of catecholamine-and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon), J. Comp. Neurol. 157:13–28.PubMedGoogle Scholar
  65. Jones, B. E., and Moore, R. Y., 1974, Catecholamine-containing neurons of the nucleus locus coeruleus in the cat, J. Comp. Neurol. 157:43–52.PubMedGoogle Scholar
  66. Jones, B. E., and Moore, R. Y., 1977, Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study, Brain Res. 127:23–53.Google Scholar
  67. Jones, B. E., Halaris, A. E., McIlhany, M., and Moore, R. Y., 1977, Ascending projections of the locus coeruleus in the rat. I. Axonal transport in central noradrenaline neurons, Brain Res. 127:1–22.PubMedGoogle Scholar
  68. Jonsson, G., Fuxe, K., and Hökfelt, T., 1972, On the catecholamine innervation of the hypothalamus, with special reference to the median eminence, Brain Res. 40:271–281.PubMedGoogle Scholar
  69. Koslow, S. H., and Schlumpf, M., 1974, Quantitation of adrenaline in rat brain nuclei and areas by mass fragmentography, Nature (London) 251:530–531.Google Scholar
  70. Kromer, L. F., and Moore, R. Y., 1976, Cochlear nucleus innervation by central norepinephrine neurons in the rat, Brain Res. 118:531–537.PubMedGoogle Scholar
  71. Kuypers, H. G. J. M., and Maisky, V. A., 1975, Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat, Neuro sci. Lett. 1:9–14.Google Scholar
  72. Laties, A. M., and Jacobowitz, D., 1966, A comparative study of the autonomic innervation of the eye in monkey, cat, and rabbit, Anat. Rec. 156:383–396.PubMedGoogle Scholar
  73. Lindvall, O., 1975, Mesencephalic dopaminergic afferents to the lateral septal nucleus of the rat, Brain Res. 87:89–95.PubMedGoogle Scholar
  74. Lindvall, O., and Björklund, A., 1974a, The glyoxylic acid fluroescence histochemical method: A detailed account of the methodology for the visualization of central catecholamine neurons, Histochemie. 39:97–127.Google Scholar
  75. Lindvall, O., and Björklund, A., 1974b, The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method, Acta Physiol. Scand. Suppl. 412:1–48.PubMedGoogle Scholar
  76. Lindvall, O., and Björklund, A., 1978, Organization of catecholamine neurons in the rat central nervous system, in: Handbook of Psychopharmacology (L. Iversen, S. Iverson, and S. H. Snyder, eds.), Vol. 9, Ch. 4, Plenum Press, New York, in press.Google Scholar
  77. Lindvall, O., Björklund, A., Hökfelt, T., and Ljungdahl, A., 1973, Application of the glyoxylic acid method to Vibratome sections for the improved visualization of central catecholamine neurons, Histochemie 35:31–38.PubMedGoogle Scholar
  78. Lindvall, O., Björklund, A., Moore, R. Y., and Stenevi, U., 1974a, Mesencephalic dopamine neurons projecting to neocortex, Brain Res. 81:325–331.PubMedGoogle Scholar
  79. Lindvall, O., Björklund, A., Nobin, A., and Stenevi, U., 1974b, The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method, J. Comp. Neurol. 154:317–348.PubMedGoogle Scholar
  80. Llamas, A., Reinoso-Suarez, F., and Martinez-Moreno, E., 1975, Projections to the gyrus proreus from the brain stem tegmentum (locus coeruleus, raphe nuclei) in the cat, demonstrated by retrograde transport of horseradish peroxidase, Brain Res. 89:331–336.PubMedGoogle Scholar
  81. Lorén, I., Björklund, A., Falck, B., and Lindvall, O., 1976, An improved histofluorescence procedure for freeze-dried paraffin-embedded tissue based on combined formaldehyde-glyoxylic acid perfusion with high magnesium content and acid pH, Histochemistry 49:177–192.PubMedGoogle Scholar
  82. Lorente de No’, R., 1949, Cerebral cortex: Architecture, intracortical connections, motor projections, in: Physiology of the Nervous System, (J. Fulton, ed.), 3rd Ed., pp. 288–312, Oxford University Press, New York.Google Scholar
  83. Maeda, T., and Shimizu, N., 1972, Projections ascendentes du locus coeruleus et e’autres neurones aminergiques pontiques au niveau de prosencephale du rat, Brain Res. 36:19–35.PubMedGoogle Scholar
  84. Maler, L., Fibirger, H. C., and McGeer, P. L., 1973, Demonstration of the nigrostriatal projection by silver staining after nigral injections of 6-hydroxydopamine, Exp. Neurol. 40:505–515.PubMedGoogle Scholar
  85. Malmfors, T., 1963, Evidence of adrenergic neurons with synaptic terminals in the retina of rats demonstrated with fluorescence and electron microscopy, Acta Physiol. Scand. 58:99–100.PubMedGoogle Scholar
  86. Moore, R. Y., 1977, Catecholamine innervation of the basal forebrain. I. The septal area, J. Comp. Neurol., in press.Google Scholar
  87. Moore, R. Y., Bhatnagar, R. K., and Heller, A., 1971, Anatomical and chemical studies of a nigro-neostriatal projection in the cat, Brain Res. 30:119–135.PubMedGoogle Scholar
  88. Moore, R. Y., Björklund, A., and Stenevi, U., 1974, Growth and plasticity of adrenergic neurons, in: The Neurosciences-Third Study Program (F. O. Schmitt and F. G. Worden, eds.), pp. 961–977, MIT Press, Cambridge.Google Scholar
  89. Mugnaini, E., and Dahl, A.-L., 1975, Mode of distribution of aminergic fibers in the cerebellar cortex of the chicken, J. Comp. Neurol. 162:417–432.PubMedGoogle Scholar
  90. Nobin, A., and Björklund, A., 1973, Topography of the monoamine neuron systems in the human brain as revealed in fetuses, Acta. Physiol. Scand. Suppl. 388:1–40.PubMedGoogle Scholar
  91. Olson, L., and Fuxe, K., 1971, On the projections from the locus coeruleus noradrenaline neurons: The cerebellar innervation, Brain Res. 28:165–171.PubMedGoogle Scholar
  92. Olson, L., Borens, L. O., and Seiger, A., 1973, Histochemical demonstration and mapping of 5-hydroxytryptamine-and catecholamine-containing neuron systems in the human fetal brain, Z. Anat. Entwicklungsgesch. 139:259–282.PubMedGoogle Scholar
  93. Palkovits, M., and Jacobowitz, D. M., 1974, Topographic atlas of catecholamine-and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon), J. Comp. Neurol. 157:29–42.PubMedGoogle Scholar
  94. Pickel, V. M., Segal, M., and Bloom, F. E., 1974, An radioautographic study of the efferent pathways of the nucleus locus coeruleus, J. Comp. Neurol. 155:15–42.PubMedGoogle Scholar
  95. Pohorecky, L. A., Zigmond, M., Karten, H., and Wurtman, R. J., 1969, Enzymatic conversion of norepinephrine to epinephrine by the brain, J. Pharmacol. Exp. Ther. 165:190–195.PubMedGoogle Scholar
  96. Reid, J. L., Zivin, J. A., Foppen, F. H., and Kopin, I. J., 1975, Catecholamine neurotransmitters and synthetic enzymes in the spinal cord of the rat, Life Sci. 16:975–984.PubMedGoogle Scholar
  97. Reid, J. L., Zivin, J. A., and Kopin, I. J., 1976, The effects of spinal cord transsection and intracistemal 6-hydroxydopamine on phenylethanolamine-N-methyl transferase (PNMT) activity in rat brain stem and spinal cord, J. Neurochem. 26:629–631.PubMedGoogle Scholar
  98. Russell, G. V., 1955, The nucleus locus coeruleus (dorsal lateralis tegmenti), Tex. Rep. Biol. Med. 13:939–988.PubMedGoogle Scholar
  99. Saavedra, J. M., Palkovits, M., Brownstein, M. J., and Axelrod, J., 1974, Localization of phenylethanolamine N-methyl transferase in the rat brain nuclei, Nature (London) 248:695–696.Google Scholar
  100. Scheibel, M. E., and Scheibel, A. B., 1957, Structural substrates for integrative patterns in the brain stem reticular core, in: Reticular Formation of the Brain, (H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Moseley, and R. T. Costello eds.), pp. 31–55, Little, Brown and Co., Boston.Google Scholar
  101. Seiger, Å., and Olson, L., 1973, Late prenatal ontogeny of central monoamine neurons in the rat: Fluorescence histochemical observations, Z. Anat. Entwicklungsgesch. 140:281–318.PubMedGoogle Scholar
  102. Shimizu, N., and Ohnishi, S., 1973, Demonstration of nigro-neostriatal tract by degeneration silver method, Exp. Brain Res. 17:133–138.PubMedGoogle Scholar
  103. Swanson, L. W., 1976, The locus coeruleus: A cytoarchitectonic, Golgi and immunohistochemical study in the albino rat, Brain Res. 110:39–56.PubMedGoogle Scholar
  104. Swanson, L. W., and Hartman, B. K., 1975, The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-β-hydroxylase as a marker, J. Comp. Neurol. 163:467–506.PubMedGoogle Scholar
  105. Thierry, A. M., Blane, G., Sobel, A., Stinus, L., and Glowinski, J., 1973a, Dopaminergic terminals in the rat cortex, Science 182:499–501.PubMedGoogle Scholar
  106. Thierry, A. M., Stinus, L., Blane, G., and Glowinski, J., 1973b, Some evidence for the existence of dopaminergic neurons in the rat cortex, Brain Res. 50:230–234.PubMedGoogle Scholar
  107. Ungerstedt, U., 1971, Stereotaxic mapping of the monamine pathways in the rat brain, Acta. Physiol. Scand. Suppl. 367:1–48.PubMedGoogle Scholar
  108. Van der Gugten, J., Palkovits, M., Wijen, H. L. J. M., and Versteeg, D. H. G., 1976, Regional distribution of adrenaline in rat brain, Brain Res. 107:171–175.PubMedGoogle Scholar
  109. Vogt, M., 1954, The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs, J. Physiol. (London) 123:451–481.Google Scholar
  110. von Euler, U. S., 1946, A specific sympathomimetic ergone in adrenergic nerve fibers (sympathin) and its relation to adrenaline and noradrenaline, Acta Physiol. Scand. 12:73–96.Google Scholar
  111. Zivin, J. A., Reid, J. L., Saavedra, J. M., and Kopin, I. J., 1975, Quantitative localization of biogenic amines in the spinal cord, Brain Res. 99:293–301.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  1. 1.Department of NeurosciencesUniversity of California at San DiegoLa JollaUSA

Personalised recommendations