Skip to main content

Mathematical Models of Membrane Transport Processes

  • Chapter
Physiology of Membrane Disorders

Abstract

The burgeoning interest in membrane research reflects the central role played by membranes in physiological processes, together with the fact that most of the important membrane transport problems remain unsolved. These unsolved problems are frequently based on complex molecular interactions which are poorly understood. One of the first tasks confronting an investigator is to separate out those portions of transport processes that can be adequately described in elementary terms, e. g., in terms of diffusion and osmosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fick, A. 1855. Phil. Mag. 10 (4): 30.

    Google Scholar 

  2. Crank, J. 1957. The Mathematics of Diffusion. Oxford Univ. Press, London and New York.

    Google Scholar 

  3. Carslaw, H. S., and J. C. Jaeger. 1959. Conduction of Heat in Solids. Oxford Univ. Press, London and New York.

    Google Scholar 

  4. Abramowitz, M., and I. A. Stegun. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics. Series 55.

    Google Scholar 

  5. Helfferich, F. 1962. Ion Exchange. McGraw-Hill, New York.

    Google Scholar 

  6. Dainty, J., and C. R. House, 1966. “Unstirred layers” in frog skin. J. Physiol. 182:66–78.

    Google Scholar 

  7. Wright, E. M., A. P. Smulders, and J. M. Tormey. 1972. The role of the lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gallbladder. J. Membr. Biol. 7:198– 219.

    Google Scholar 

  8. House, C. R. 1974. Water Transport in Cells and Tissues. Arnold, London.

    Google Scholar 

  9. Finkelstein, A., and A. Cass. 1968. Permeability and electrical properties of thin lipid membranes. J. Gen. Physiol. 52: 145s.

    Article  CAS  Google Scholar 

  10. Foster, M., and S. McLaughlin. 1974. Complexes between uncouplers of oxidative phosphorylation. J. Membr. Biol. 17: 155 – 180.

    Article  PubMed  CAS  Google Scholar 

  11. Diamond, J. M., and E. M. Wright. 1969. Molecular forces governing nonelectrolyte permeation through cell membranes. Proc. R. Soc. Lond. B. 172: 273 – 316.

    Article  CAS  Google Scholar 

  12. Diamond, J. M., and E. M. Wright. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity. Anna. Rev. Physiol. 31: 581 – 646.

    Article  CAS  Google Scholar 

  13. Diamond, J. M., and Y. Katz. 1974. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J. Membr. Biol. 17: 121 – 154.

    Article  PubMed  CAS  Google Scholar 

  14. Cass, A., and A. Finkelstein. 1967. Water permeability of thin lipid membranes. J. Gen. Physiol. 50:1765– 1784.

    Google Scholar 

  15. Gutknecht, J. 1968. Permeability of Valonia to water and solutes: Apparent absence of aqueous membrane pores. Biochim. Biophys. Acta 163: 20.

    Article  PubMed  CAS  Google Scholar 

  16. Mauro, A. 1957. Nature of solvent transfer in osmosis. Science 126, Series 2: 252 – 253.

    Article  PubMed  CAS  Google Scholar 

  17. Paganelli, C. V., and A. K. Soloman. 1957. The rate of exchange of tritiated water across the human red cell membrane. J. Gen. Physiol. 41: 259.

    Article  PubMed  CAS  Google Scholar 

  18. Kedem, O., and A. Katchalsky. 1958. Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes. Biochim. Biophys. Acta 27: 229 – 246.

    Article  PubMed  CAS  Google Scholar 

  19. Kedem, O., and A. Katchalsky. 1961. A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45: 143 – 179.

    Article  PubMed  CAS  Google Scholar 

  20. Ginzburg, B. Z., and A. Katchalsky. 1963. The fric- tional coefficients of the flows of nonelectrolytes through artificial membranes. J. Gen. Physiol. 47:403– 408.

    Google Scholar 

  21. Landahl, H. D. 1953. Note on the Donnan equilibrium. Bull. Math. Biophys. 15: 153.

    Article  CAS  Google Scholar 

  22. Goldman, D. E. 1944. Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27: 37 – 60.

    Article  Google Scholar 

  23. Cole, K. S. 1965. Electrodiffusion of models for the membrane of squid giant axon. Physiol. Rev. 45:340– 379.

    Google Scholar 

  24. Agin, D. 1967. Electroneutrality and electrodiffusion in the squid axon. Proc. Natl. Acad. Sci. U.S.A. 57: 1232 – 1238.

    Article  PubMed  CAS  Google Scholar 

  25. Adrian, R. H. 1969. Rectification in muscle membrane. In: Progress in Biophysics and Molecular Biology, Vol. 19, Pt. 2. J. A. V. Butler and D. Noble, eds. Pergamon, Oxford, pp. 339 – 369.

    Google Scholar 

  26. MacGillivary, A. D., and D. Hare. 1969. Applicability of Goldman’s constant field assumption to biological systems. J. Theor. Biol. 25: 113 – 126.

    Article  Google Scholar 

  27. Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes. In: Progress in Biophysics and Biophysical Chemistry, Vol. 3. J. A. V. Butler and D. Noble, eds. Pergamon, Oxford, pp. 305– 369.

    Google Scholar 

  28. Jacquez, J. A., and S. G. Schultz. 1974. A general relation between membrane potential, ion activities, and pump fluxes for symmetric cells in a steady state. Math. Biosci. 20: 19.

    Article  CAS  Google Scholar 

  29. Stein, W. D., and J. F. Danielli. 1956. Structure and function in red cell permeability. Discuss. Faraday Soc. 21: 238 – 251.

    Article  Google Scholar 

  30. LeFevre, P. G. 1975. A comparison of recent suggestions for the functional organization of red-cell sugar- transport sites based on kinetic observations. Ann. N.Y. Acad. Sci. 264: 398 – 413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Publishing Corporation

About this chapter

Cite this chapter

Macey, R.I. (1978). Mathematical Models of Membrane Transport Processes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3958-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3958-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3960-1

  • Online ISBN: 978-1-4613-3958-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics