Excitable Tissues: The Heart

  • Richard W. Tsien
  • Steven Siegelbaum


Cardiac action potentials serve many purposes. They form the cellular basis for pacemaker activity, impulse spread, and control of cardiac contraction. Despite this variety of functions, there are ample reasons for believing that impulses in cardiac cells follow the same general principles as in other excitable tissues. The preceding chapters on nerve and skeletal muscle have provided a useful foundation for understanding action potentials in heart. We shall draw upon such similarities, but shall also focus on the unique aspects of cardiac activity.


Sodium Channel Conduction Velocity Slow Response Purkinje Fiber Pacemaker Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McNutt, N. S., and R. S. Weinstein. 1973. Membrane ultrastructure at mammalian intercellular junctions. Prog. Biophys. Mol Biol. 26: 45–101.PubMedCrossRefGoogle Scholar
  2. 2.
    Barr, L., M. M. Dewey, and W. Berger. 1965. Propagation of action potentials and the structure of the nexus in cardiac muscle. J. Gen. Physiol 48: 797–823.PubMedCrossRefGoogle Scholar
  3. 3.
    Dreifuss, J. J., L. Girardier, and W. G. Forssmann. 1966. Étude de la propagation de l’éxcitation dans le ventricle de rat au moyen de solutions hypertoniques. Pfluegers Arch. 292: 13–33.CrossRefGoogle Scholar
  4. 4.
    Kawamura, K., and Konishi, T. 1967. Ultrastructure of the cell junction of heart muscle with special reference to its functional significance in excitation conduction and to the concept of “disease of intercalated disc.” Jap. Cire. J. 31: 1533–1543.Google Scholar
  5. 5.
    Gilula, N. B. 1974. Junctions between cells. In: Cell Communication. R. P. Cox, ed. Wiley, New York.Google Scholar
  6. 6.
    Weidmann, S. 1966. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J. Physiol. 187: 323–342.PubMedGoogle Scholar
  7. 7.
    Weingart, R. 1974. The permeability to tetraethylammonium ions of the surface membrane and the intercalated disks of sheep and calf myocardium. J. Physiol 240: 741–762.PubMedGoogle Scholar
  8. 8.
    Imanaga, I. 1974. Cell to cell diffusion of Procion Yellow in sheep and calf Purkinje fibres. J. Membr. Biol 16: 381–388.PubMedCrossRefGoogle Scholar
  9. 9.
    Pollack, G. H. 1976. Intercellular coupling in the atrioventricular node and other tissues of the rabbit heart. J. Physiol 255: 275–298.PubMedGoogle Scholar
  10. 10.
    Weidmann, S. 1970. Electrical constants of trabecular muscle from mammalian heart. J. Physiol 210: 1041–1054.PubMedGoogle Scholar
  11. 11.
    Kushmerick, M. J., and R. J. Podolsky. 1969. Ionic mobility in muscle cells. Science 166: 1297–1298.PubMedCrossRefGoogle Scholar
  12. 12.
    Matter, A. 1973. A morphometric study on the nexus of rat cardiac muscle. J. Cell Biol. 56: 690–696.PubMedCrossRefGoogle Scholar
  13. 12a.
    Katz, B. 1966. Nerve, Muscle, and Synapse. McGraw-Hill, New York.Google Scholar
  14. 13.
    Jack, J. J. B., D. Noble, and R. W. Tsien. 1975. Electric Current Flow in Excitable Cells. Oxford Univ. Press, London and New York.Google Scholar
  15. 14.
    Weidmann, S. 1952. The electrical constants of Purkinje fibres. J. Physiol. 115: 227–236.Google Scholar
  16. 15.
    Bonke, F. I. M. 1973. Electrotonic spread in the sinoatrial node of the rabbit heart. Pfluegers Arch. 339: 17–23.CrossRefGoogle Scholar
  17. 16.
    Shigeto, N., and H. Irisawa. 1972. Slow conduction in the atrioventicular node of the cat: A possible explanation. Experientia 28: 1442–1443.PubMedCrossRefGoogle Scholar
  18. 17.
    Woodbury, J. W., and W. E. Crill. 1961. On the problem of impulse conduction in the atrium. Nervous Inhibition. E. Florey, ed. Pergamon, Oxford, pp. 124–135.Google Scholar
  19. 18.
    Draper, M. H., and M. Mya-Tu. 1959. A comparison of the conduction velocity in cardiac tissues of various mammals. Q. J. Exp. Physiol. 44: 91–109.Google Scholar
  20. 19.
    Sano, T., N. Takayama, and T. Shimamoto. 1959. Directional difference of conduction velocity in the cardiac ventricular syncytium studied by microelectrodes. Circ. Res. 7: 262–267.PubMedGoogle Scholar
  21. 20.
    Clerc, L. 1976. Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255: 335–346.PubMedGoogle Scholar
  22. 21.
    Woodbury, J. W. 1962. Cellular electrophysiology of the heart. In: Handbook of Physiology, Section 2, Vol. 1. Am. Physiol. Soc., Washington, D.C.Google Scholar
  23. 22.
    Hodgkin, A. L. 1951. The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26: 339–409.CrossRefGoogle Scholar
  24. 23.
    Draper, M. H., and S. Weidmann. 1951. Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. 115: 74–94.PubMedGoogle Scholar
  25. 24.
    del Castillo, J., and J. W. Moore. 1959. On increasing the velocity of a nerve impulse. J. Physiol. 148: 665–670.Google Scholar
  26. 25.
    Weingart, R. 1977. The actions of ouabain on intercellular coupling and conduction velocity in mammalian ventricular muscle. J. Physiol. 264: 341–365.PubMedGoogle Scholar
  27. 26.
    Goodman, D. B. P., F. E. Bloom, E. R. Battenberg, H. Rasmussen, and W. L. Davis. 1975. Immunofluorescent localization of cyclic AMP in toad urinary bladder: Possible intercellular transfer. Science 188: 1023–1025.PubMedCrossRefGoogle Scholar
  28. 27.
    Subak-Sharpe, H., R. R. Bürk, and J. D. Pitts. 1969. Metabolic cooperation between biochemically marked mammalian cells in tissue culture. J. Cell Sci. 4: 353–367.PubMedGoogle Scholar
  29. 28.
    Tsien, R. W., and R. Weingart. 1976. Inotropic effect of cyclic AMP in calf ventricular muscle studied by a cut-end method. J. Physiol. 260: 117–141.PubMedGoogle Scholar
  30. 29.
    Hoffman, B. F., and P. F. Cranefield. 1960. Electrophysiology of the Heart. McGraw-Hill, New York.Google Scholar
  31. 30.
    Hogan, P. M., and L. D. Davis. 1968. Evidence for specialized fibers in the canine right atrium. Circ. Res. 23: 387–396.PubMedGoogle Scholar
  32. 31.
    Mendez, C., and G. K. Moe. 1972. Atrioventricular transmission. In: Electrical Phenomena in the Heart. W. C. DeMello, ed. Academic Press, New York.Google Scholar
  33. 32.
    Cranefield, P. F. 1975. The Conduction of the Cardiac Impulse. Futura, Mount Kisco, New York.Google Scholar
  34. 33.
    Dudel, J., K. Peper, R. Rüdel, and W. Trautwein. 1967. The effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers). Pfluegers Arch. 295: 213–226.CrossRefGoogle Scholar
  35. 34.
    Dudel, J., and R. Rüdel. 1970. Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibers. Pfluegers Arch. 315: 136–158.CrossRefGoogle Scholar
  36. 35.
    Beeler, G. W., Jr., and H. Reuter. 1970a. Voltage clamp experiments on ventricular myocardial fibres. J. Physiol. 207: 191–209.PubMedGoogle Scholar
  37. 36.
    Johnson, E. A., and M. Lieberman. 1971. Heart: Excitation and contraction. Annu. Rev. Physiol. 33: 479–532.PubMedCrossRefGoogle Scholar
  38. 37.
    Tarr, M., and J. W. Trank. 1974. An assessment of the double sucrose-gap voltage clamp technique as applied to frog atrial muscle. Biophys. J. 14: 627–643.PubMedCrossRefGoogle Scholar
  39. 38.
    Noble, D. 1975. The Initiation of the Heartbeat. Oxford Univ. Press, London and New York.Google Scholar
  40. 39.
    Weidmann, S. 1955. The effect of the cardiac membrane potential on the rapid availability of the sodium- carrying system. J. Physiol. 127: 213–224.PubMedGoogle Scholar
  41. 40.
    Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108: 37–77.PubMedGoogle Scholar
  42. 41.
    Sommer, J. R., and E. A. Johnson. 1968. Cardiac muscle. A comparative study in Purkinje fibers and ventricular fibers. J. Cell Biol. 36: 497–526.PubMedCrossRefGoogle Scholar
  43. 42.
    Mobley, B. A., and E. Page. 1972. The surface area of sheep cardiac Purkinje fibres. J. Physiol. 220: 547–563.PubMedGoogle Scholar
  44. 43.
    Fozzard, H. A. 1966. Membrane capacity of the cardiac Purkinje fibre. J. Physiol. 182: 255–267.PubMedGoogle Scholar
  45. 44.
    Carmeliet, E., and J. Willems. 1971. The frequency dependent character of the membrane capacity in cardiac Purkinje fibres. J. Physiol. 213: 85–93.PubMedGoogle Scholar
  46. 45.
    Myerburg, R. J., H. Gelband, and B. F. Hoffman. 1971. Functional characteristics of the gating mechanism in the canine A-V conducting system. Circ. Res. 28: 136–147.PubMedGoogle Scholar
  47. 46.
    Singer, D. H., R. Lazzara, and B. F. Hoffman. 1967. Interrelationships between automaticity and conduction in Purkinje fibers. Circ. Res. 21: 537–558.PubMedGoogle Scholar
  48. 47.
    Singh, B. N., and E. M. Vaughan Williams. 1971. Effect of altering potassium concentration on the action of lidocaine and diphenylhydantoin on rabbit atrial and ventricular muscle. Circ. Res. 29: 286–295.PubMedGoogle Scholar
  49. 48.
    Gettes, L. S., and H. Reuter. 1974. Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J. Physiol. 240: 703–724.PubMedGoogle Scholar
  50. 49.
    Haas, H. G., R. Kern, H. M. Einwachter, and M. Tarr. 1971. Kinetics of Na inactivation in frog atria. Pfluegers Arch. 323: 141–157.CrossRefGoogle Scholar
  51. 50.
    Goldman, L. 1976. Kinetics of channel gating in excitable membranes. Q. Rev. Biophys. 9: 491–526.PubMedCrossRefGoogle Scholar
  52. 51.
    Weidmann, S. 1955. Effects of calcium ions and local anesthetics on the electrical properties of Purkinje fibres. J. Physiol. 129: 568–582.PubMedGoogle Scholar
  53. 52.
    Weld, F. M., and J. T. Bigger. 1975. Effect of lidocaine on the early inward transient current in sheep cardiac Purkinje fibers. Circ. Res. 37: 630–639.PubMedGoogle Scholar
  54. 53.
    Chen, C. M., L. S. Gettes, and B. G. Katzung. 1975. Effect of lidocaine and quinidine on steady state characteristics and recovery kinetics of (dV/dt)max in guinea pig ventricular myocardium. Circ. Res. 37: 20–29.PubMedGoogle Scholar
  55. 54.
    Courtney, K. R. 1975. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA 968. J. Pharmacol. Exp. Ther. 195: 225–236.PubMedGoogle Scholar
  56. 55.
    Johnson, E. A., and M. G. McKinnon. 1957. The differential effect of quinidine and pyrilamine on the myocardial action potential at various rates of stimulation. J. Pharmacol. Exp. Ther. 120: 460–468.PubMedGoogle Scholar
  57. 56.
    Heistracher, P. 1971. Mechanism of action of antifibrillatory drugs. Naunyn Schmie deb ergs Arch. Pharmacol. 269: 199–212.CrossRefGoogle Scholar
  58. 57.
    Strichartz, G. R. 1973. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. Gen. Physiol. 62: 37–57.PubMedCrossRefGoogle Scholar
  59. 58.
    Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500–544.PubMedGoogle Scholar
  60. 59.
    Weidmann, S. 1956. Elektrophysiologie der Herzmuskelfaser. Huber, Bern.Google Scholar
  61. 60.
    Weidmann, S. 1971. The microelectrode and the heart 1950–1970. In: Research in Physiology. F. F. Kao, K. Koizumi, and M. Vassalle, eds. Aulo Gaggi, Bologna.Google Scholar
  62. 61.
    Reuter, H. 1973. Divalent cations as charge carriers in excitable membranes. Prog. Biophys. Mol. Biol. 26: 1–43.PubMedCrossRefGoogle Scholar
  63. 62.
    Reuter, H., and H. Scholz. 1977. A study of the ion selectivity and the kinetic properties of the calcium- dependent slow inward current in mammalian cardiac muscle. J. Physiol. 264: 17–47.PubMedGoogle Scholar
  64. 63.
    Hodgkin, A. L., and A. F. Huxley. 1952d. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500–544.PubMedGoogle Scholar
  65. 64.
    Weidmann, S. 1974. Heart: Electrophysiology. Annu. Rev. Physiol. 36: 155–169.PubMedCrossRefGoogle Scholar
  66. 65.
    Fozzard, H. A., and G. W. Beeler, Jr. 1975. The voltage clamp and cardiac electrophysiology. Circ. Res. 37: 403–413.PubMedGoogle Scholar
  67. 66.
    Hagiwara, S., and S. Nakajima. 1966. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine and manganese ions. J. Gen. Physiol. 49: 793–806.PubMedCrossRefGoogle Scholar
  68. 67.
    Imanishi, S. 1971. Calcium-sensitive discharges in canine Purkinje fibers. Jap. J. Physiol. 21: 443–463.CrossRefGoogle Scholar
  69. 68.
    Katzung, B. G., L. M. Hondeghem, and A. O. Grant. 1975. Cardiac ventricular automaticity induced by current of injury. Pfluegers Arch. 360: 193–197.CrossRefGoogle Scholar
  70. 69.
    Kreitner, D. 1975. Evidence for the existence of a rapid sodium channel in the membrane of rabbit sinoatrial cells. J. Mol. Cell. Cardiol. 7: 655–662.PubMedCrossRefGoogle Scholar
  71. 70.
    Noble, D., and R. W. Tsien. 1972. The repolarization process of heart cells. In: Electrical Phenomena in Heart. W. C. de Mello, ed. Academic Press, New York.Google Scholar
  72. 71.
    Morad, M., and Y. Goldman. 1973. Excitation-contraction coupling in heart muscle: Membrane control of development of tension. Prog. Biophys. Mol. Biol. 27: 257–313.CrossRefGoogle Scholar
  73. 72.
    Fozzard, H. A., and W. R. Gibbons. 1973. Action potential and contraction of heart muscle. Am. J. Cardiol. 31: 182–192.PubMedCrossRefGoogle Scholar
  74. 73.
    Reuter, H. 1974. Exchange of calcium ions in the mammalian myocardium. Circ. Res. 34: 599–605.PubMedGoogle Scholar
  75. 74.
    Costantin, L. L. 1977. Activation in striated muscle. In: The Handbook of Physiology. E. Kandel, ed. American Physiological Society, Washington, D.C.Google Scholar
  76. 75.
    Brown, H. F., and S. J. Noble. 1969. Membrane currents underlying delayed rectification and pace-maker activity in frog atrial muscle. J. Physiol. 204: 717–736.PubMedGoogle Scholar
  77. 76.
    Katzung, B. G. 1975. Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea pig papillary muscle. Circ. Res. 37: 118–127.PubMedGoogle Scholar
  78. 77.
    Bosteels, S., and E. Carmeliet. 1972. Estimation of intracellular Na concentration and transmembrane Na flux in cardiac Purkynë fibres. Pfluegers Arch. 336: 35–47.CrossRefGoogle Scholar
  79. 78.
    Walker, J. L., and R. O. Ladle. 1973. Frog heart intracellular potassium activities measured with potassium microelectrodes. Am. J. Physiol. 225: 263–267.PubMedGoogle Scholar
  80. 79.
    Vassalle, M. 1966. Analysis of cardiac pace-maker potential using a “voltage clamp” technique. Am. J. Physiol. 210: 1335–1341.PubMedGoogle Scholar
  81. 80.
    Noble, D., and R. W. Tsien. 1968. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J. Physiol. 195: 185–214.PubMedGoogle Scholar
  82. 81.
    Peper, K., and W. Trautwein. 1969. A note on the pacemaker current in Purkinje fibres. Pfluegers Arch. 309: 356–361.CrossRefGoogle Scholar
  83. 82.
    Cohen, I., J. Daut, and D. Noble. 1977. The effects of potassium on temperature on the pacemaker current, IK2 in Purkinje fibres. J. Physiol. 260: 55–74.Google Scholar
  84. 83.
    Brown, H. F., A. Clark, and S. J. Noble. 1972. The pacemaker current in frog atrium. Nature (New Biol.) 235: 30–31.CrossRefGoogle Scholar
  85. 84.
    Giles, W. 1974. Electrophysiology of frog atrial muscle. Ph.D. Thesis, Yale University, New Haven, Connecticut.Google Scholar
  86. 85.
    Irisawa, H. 1972. Electrical activity of rabbit sinoatrial node as studied by a double sucrose gap method. In: 12th International Colloquium Vectorcardiographicum. P. Rijlant, ed. Presses Académiques Européennes, Bruxelles, pp. 242–248.Google Scholar
  87. 86.
    Noma, A., and H. Irisawa. 1976. Membrane currents in the rabbit sinoatrial node cell as studied by the double microelectrode method. Pfluegers Arch. 364: 45–52.CrossRefGoogle Scholar
  88. 87.
    Brown, H. F., W. Giles, and S. J. Noble. 1976. Voltage clamp of frog sinus venosus. J. Physiol. 258: 78–79 P.Google Scholar
  89. 88.
    Brown, H. F., P. A. McNaughton, D. Noble, and S. J. Noble. 1975. Adrenergic control of cardiac pace-maker currents. Philos. Trans. R. Soc. Lond. (Biol.) 270: 527–537.CrossRefGoogle Scholar
  90. 89.
    Hutter, O. F. 1957. Mode of action of autonomic transmitters on the heart. Br. Med. Bull. 13: 176–180.PubMedGoogle Scholar
  91. 90.
    Vassort, G., O. Rougier., D. Gamier, M. P. Sauviat, E. Coraboeuf, and Y. M. Gargouil. 1969. Effects of adrenaline on membrane inward currents during the cardiac action potential. Pfluegers Arch. 309: 70–81.CrossRefGoogle Scholar
  92. 91.
    Giles, W., and R. W. Tsien. 1975. Effects of acetylcholine on membrane currents in frog atrial muscle. J. Physiol. 246: 64–66 p.Google Scholar
  93. 92.
    Giles, W., and S. J. Noble. 1976. Changes in membrane current in bullfrog atrium produced by acetylcholine. J. Physiol. 261: 103–123.PubMedGoogle Scholar
  94. 93.
    Bassingthwaighte, J. B., and H. Reuter. 1972. Calcium movements and excitation-contraction coupling in cardiac cells. In: Electrical Phenomena in the Heart. W. C. de Mello, ed. Academic Press, New York. pp. 353–395.Google Scholar
  95. 94.
    Trautwein, W., T. F. McDonald, and O. Tripathi. 1975. Calcium conductance and tension in mammalian ventricular muscle. Pfluegers Arch. 354: 55–74.CrossRefGoogle Scholar
  96. 95.
    Reuter, H. 1974. Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J. Physiol. 242: 429–451.PubMedGoogle Scholar
  97. 96.
    Reuter, H., and H. Scholz. 1977. The regulation of the Ca conductance of cardiac muscle by adrenaline. J. Physiol. 264: 49–62.PubMedGoogle Scholar
  98. 97.
    Ikemoto, Y., and M. Goto. 1975. Nature of the negative inotropic effect of acetylcholine on the myocardium. Proc. Jap. Acad. 51: 501–505.Google Scholar
  99. 98.
    Ten Eick, R., H. Nawrath, T. F. McDonald, and W. Trautwein. 1976. On the mechanism of the negative inotropic effect of acetylcholine. Pfluegers Arch. 361: 207–213.CrossRefGoogle Scholar
  100. 99.
    Katz, A. M., M. Tada, and M. A. Kirchberger. 1975. Control of calcium transport in the myocardium by the cyclic AMP-protein kinase system. In: Advances in Cyclic Nucleotide Research, Vol. 5. G. I. Drummond, P. Greengard, and G. A. Robison, eds. Raven Press, New York. pp. 453–472.Google Scholar
  101. 100.
    Tsien, R. W., W. R. Giles, and P. Greengard. 1972. Cyclic AMP mediates the action of adrenaline on the action potential plateau of cardiac Purkinje fibres. Nature (New Biol.) 240: 181–183.Google Scholar
  102. 101.
    Brown, H. F., and S. J. Noble. 1974. Effects of adrenaline on membrane currents underlying pace-maker activity in frog atrial muscle. J. Physiol. 238: 51–53 P.Google Scholar
  103. 102.
    Hauswirth, O., D. Noble, and R. W. Tsien. 1968. Adrenaline: Mechanism of action of the pacemaker potential in cardiac Purkinje fibres. Science 162: 916–917.PubMedCrossRefGoogle Scholar
  104. 103.
    Tsien, R. W. 1974. Effects of epinephrine on the pacemaker potassium current of cardiac Purkinje fibers. J. Gen. Physiol. 64: 293–319.PubMedCrossRefGoogle Scholar
  105. 104.
    Tsien, R. W. 1973. Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibers. Nature (New Biol.) 245: 120–122.CrossRefGoogle Scholar
  106. 105.
    Yamasaki, Y., M. Fujiwara, and N. Toda. 1974. Effects of intracellularly applied cyclic 3′,5′-adenosine monophosphate and dibutyryl cyclic 3′,5′-adenosine monophosphate on the electrical activity of sinoatrial nodal cells of the rabbit. J. Pharmacol. Exp. Ther. 190: 15–20.PubMedGoogle Scholar
  107. 106.
    Nawrath, H. 1976. Cyclic AMP and cyclic GMP may play opposing roles in influencing force of contraction in mammalian myocardium. Nature 262: 509–511.PubMedCrossRefGoogle Scholar
  108. 107.
    Weidmann, S. 1966. Cardiac electrophysiology in the light of recent morphological findings. Harvey Lect. 61: 1–15.Google Scholar
  109. 108.
    McNutt, N. S., and D. W. Fawcett. 1974. Myocardial ultrastructure. In: The Mammalian Myocardium. G. A. Langer and A. J. Brady, eds. Wiley, New York.Google Scholar
  110. 109.
    Netter, F. H. 1969. The CIBA Collection of Medical Illustrations, Vol. 5. CIBA Pharmaceutical Co., New York.Google Scholar
  111. 110.
    Weidmann, S. 1957. Resting and action potentials of cardiac muscle. Ann. N.Y. Acad. Sci. 65: 663–678.PubMedCrossRefGoogle Scholar
  112. 111.
    Kass,R. S., andR.W. Tsien. 1975. Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J. Gen. Physiol. 66: 169–192.PubMedCrossRefGoogle Scholar
  113. 112.
    Hutter, O. F., and W. Trautwein. 1956. Vagal and sympathetic effects on the pacemaker fibres in the sinus venosus of the heart. J. Gen. Physiol. 39:715– 733.Google Scholar
  114. 113.
    Toda, N., and T. C. West. 1967. Interactions of K, Na, and vagal stimulation in the S-A node of the rabbit. Am. J. Physiol. 212: 416–423.PubMedGoogle Scholar
  115. 114.
    Otsuka, M. 1958. Die Wirkung von Adrenalin auf Purkinje-Fasern von Säugetieren. Pfluegers Arch. Ges. Physiol. 266: 512–517.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Richard W. Tsien
    • 1
  • Steven Siegelbaum
    • 1
  1. 1.Department of PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations