Advertisement

Collision-Induced Dissociation of Diatomic Ions

  • J. Los
  • T. R. Govers

Abstract

It is the aim of this chapter to show how, in recent years, relatively simple mass spectrometry experiments have contributed considerably to the general understanding of dissociation in heavy-particle collisions. When a well-defined primary beam of (diatomic) molecular ions impinges on a gas target at the object point of a mass spectrometer, this instrument can be used to measure the laboratory momentum distribution of the charged fragments which originate from dissociative collisions. This laboratory distribution can be converted into a momentum distribution in the center-of-mass coordinate system of the parent molecule, provided some requirements are met. In a dissociative collision of a diatomic molecule and an atom, taking into account conservation of energy and momentum, five and in many cases six velocity components of the separating particles should be measured simultaneously in order to describe the collision completely. Since only the momentum distribution of the charged fragment is determined, the interpretation of the measurements requires a number of basic concepts and models in the first place. Moreover, certain rather stringent requirements should be met in order to extract meaningful conclusions from the data. The most important of these requirements is that the laboratory deflection of the molecular center of mass may be neglected with respect to the laboratory deflection of the fragment ions which results from their dissociation velocity component in the molecular center-of-mass system.

Keywords

Momentum Distribution Vibrational Level Primary Beam Internuclear Distance Dissociative Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. W. McClure and J. M. Peek, Dissociation in Heavy Particle Collisions, Wiley-Interscience, New York, 1952.Google Scholar
  2. 2.
    J. Durup, in Recent Developments in Mass Spectrometry (K. Ogata and T. Hayakwa, eds.), University of Tokyo Press, Tokyo, 1970, p. 921.Google Scholar
  3. 3.
    J. Los, Ber. Bunsen-Gesell. Phys. Chem. 77, 640 (1973).Google Scholar
  4. 4.
    Proceedings of the Workshop on Dissociative Excitation of Simple Molecules (L. J. Kieffer, ed.), JILA Information Center Report 12, University of Colorado, Boulder, Colorado, 1972.Google Scholar
  5. 5.
    J. Schöttler and J. P. Toennies, Chem. Phys. Lett. 12, 1615 (1972).CrossRefGoogle Scholar
  6. 6.
    P. F. Dinner and S. Datz, J. Chem. Phys. 49, 1969 (1968).CrossRefGoogle Scholar
  7. 7.
    P. F. Dittner and S. Datz, J. Chem. Phys. 54, 4228 (1971).CrossRefGoogle Scholar
  8. 8.
    H. van Dop, A. J. H. Boerboom, and J. Los, Physica 54, 223 (1971).CrossRefGoogle Scholar
  9. 9.
    J. Schöttler and J. P. Toennies, Z. Phys. 214, 472 (1968).CrossRefGoogle Scholar
  10. 10.
    R. N. Zare, J. Chem. Phys. 47, 204 (1967).CrossRefGoogle Scholar
  11. 11.
    G. H. Dunn, Phys. Rev. Lett. 8, 62 (1962).CrossRefGoogle Scholar
  12. 12.
    T. A. Green and J. M. Peek, Phys. Rev. 183, 166 (1969).CrossRefGoogle Scholar
  13. 13.
    R. K. Preston and J. C. Tully, J. Chem. Phys. 54, 4297 (1971).CrossRefGoogle Scholar
  14. 14.
    T. A. Green, Phys. Rev. A 1, 1416 (1970).CrossRefGoogle Scholar
  15. 15.
    B. Meierjohann, Physica 65, 41 (1973).CrossRefGoogle Scholar
  16. 16.
    A. Russek, Physica 48, 165 (1970).CrossRefGoogle Scholar
  17. 17.
    G. Herzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules, 2nd ed., Van Nostrand-Reinhold, Princeton, New Jersey, 1950.Google Scholar
  18. 18.
    A. J. Lorquet and J. C. Lorquet, Chem. Phys. Lett. 26, 132 (1974).CrossRefGoogle Scholar
  19. 19.
    R. B. Bernstein, Phys. Rev. Lett. 16, 385 (1966).CrossRefGoogle Scholar
  20. 20.
    M. Cavallini, G. Gallinaro, L. Meneghetti, G. Scoles, and U. Valbusa, Chem. Phys. Lett. 1, 303 (1970)CrossRefGoogle Scholar
  21. 21.
    V. Henri, Compt. Rend. 177, 1037 (1923).Google Scholar
  22. 22.
    A. G. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules, 3rd ed., Chapman & Hall, London, 1968.Google Scholar
  23. 23.
    R. J. Le Roy, in Specialist Periodical Reports: Molecular Spectroscopy, Vol. 1 (R. F. Barrow, D. A. Long, and D. J. Millen, eds.), The Chemical Society, London, 1973, p. 113.Google Scholar
  24. 24.
    K. R. Way and W. C. Stwalley, J. Chem. Phys. 59, 5298 (1973).CrossRefGoogle Scholar
  25. 25.
    M. S. Child, in Specialist Periodical Reports: Molecular Spectroscopy, Vol. 2 (R. F. Barrow, D. A. Long, and D. J. Millen, eds.), The Chemical Society, London, 1974, Chapter 7.Google Scholar
  26. 26.
    F. W. Aston, Proc. Cambridge Phil. Soc. 19, 317 (1920).Google Scholar
  27. 27.
    E. Friedländer, H. Kallmann, W. Lasareff, and B. Rosen, Z Phys. 76, 60, 70 (1932).CrossRefGoogle Scholar
  28. 28.
    W. McGowan and L. Kerwin, Can. J. Phys. 41, 316 (1963).CrossRefGoogle Scholar
  29. 29.
    R. G. Cooks, J. H. Beynon, R. M. Caprioli, and G. R. Lester, Metastable Ions, Elsevier, Amsterdam, 1973.Google Scholar
  30. 30.
    W. A. Chupka, J. Chem. Phys. 30, 191 (1959).CrossRefGoogle Scholar
  31. 31.
    J. Durup, P. Fournier, and Pham Dông, Int. J. Mass Spectrom. Ion Phys. 2, 311 (1969).CrossRefGoogle Scholar
  32. 32.
    P. Fournier, A. Pernot, and J. Durup, J. Phys. (Paris) 32, 533 (1971).CrossRefGoogle Scholar
  33. 33.
    P. G. A. Fournier, in Méthodes de Spectroscopie sans Largeur Doppler de Niveaux Excités de Systèmes Moléculaires Simples, Colloques Internationaux du C.N.R.S., No. 217, Centre National de la Recherche Scientifique, Paris, 1973, p. 12.Google Scholar
  34. 34.
    J. H. Beynon, R. G. Cooks, J. W. Amy, W. E. Baitinger, and T. E. Ridley, Anal. Chem. 45, 1023A (1973).Google Scholar
  35. 35.
    D. K. Gibson, J. Los, and J. Schopman, Physica 40, 385 (1968).CrossRefGoogle Scholar
  36. 36.
    N. P. F. B. van Asselt, J. G. Maas, and J. Los, Chem. Phys. 5, 429 (1974).CrossRefGoogle Scholar
  37. 37.
    M. Vogler and W. Seibt, Z. Phys. 210, 337 (1968).CrossRefGoogle Scholar
  38. 38.
    A. S. Newton and A. G. Sciamanna, J. Chem. Phys. 50, 4868 (1970).CrossRefGoogle Scholar
  39. 39.
    T. F. Moran, F. C. Petty, and A. F. Hedrick, J. Chem. Phys. 51, 2112 (1969).CrossRefGoogle Scholar
  40. 40.
    H. Wankenne and J. Momigny, Int. J. Mass Spectrom. Ion Phys. 7, 227 (1971).CrossRefGoogle Scholar
  41. 41.
    T. O. Tiernan and R. E. Marcotte, J. Chem. Phys. 53, 2107 (1970).CrossRefGoogle Scholar
  42. 42.
    R. F. Mathis, B. R. Turner, and J. A. Rutherford, J. Chem. Phys. 49, 2051 (1968).CrossRefGoogle Scholar
  43. 43.
    T. R. Govers and J. Schopman, Chem. Phys. Lett. 12, 414 (1971).CrossRefGoogle Scholar
  44. 44.
    P. G. Fournier, T. R. Govers, C. A. van de Runstraat, J. Schopman, and J. Los, J. Phys. (Paris), 33, 755 (1972).CrossRefGoogle Scholar
  45. 45.
    J. W. McGowan and L. Kerwin, Can. J. Phys. 42, 972(1964).Google Scholar
  46. 46.
    J. Berkowitz and W. A. Chupka, J. Chem. Phys. 51, 2341 (1969).CrossRefGoogle Scholar
  47. 47.
    V. Cermák and Z. Herman, Nucleonics 19, 106 (1961).Google Scholar
  48. 48.
    F. H. Field, Accounts Chem. Res. 1, 42 (1968).CrossRefGoogle Scholar
  49. 49.
    E. Lindholm, in Ion-Molecule Reactions in the Gas Phase (P. J. Ausloos, ed.), Adv. in Chem. Series No. 58, Am. Chem. Soc. Publ., Washington, 1966, p. 1.Google Scholar
  50. 50.
    C. B. Richardson, K. B. Jefferts, and H. G. Dehmelt, Phys. Rev. 165, 80 (1968).CrossRefGoogle Scholar
  51. 51.
    J. B. Ozenne, private communication.Google Scholar
  52. 52.
    M. Vogler and B. Meierjohann, Abstracts IXth ICPEAC (J. S. Risley and R. Geballe, eds.), University of Washington Press, Seattle, 1975, p. 711.Google Scholar
  53. 53.
    D. H. Jaecks, W. de Rijk, and P. J. Martin, Abstracts Vllth ICPEAC (L. Branscomb et al., eds.), North-Holland Publ., Amsterdam, 1971, p. 424.Google Scholar
  54. 54.
    P. Erman, Physica Scripta 14, 51 (1976), and references therein.CrossRefGoogle Scholar
  55. 55.
    J. G. Maas, N. P. F. B. van Asselt, and J. Los, Chem. Phys. 8, 37 (1975).CrossRefGoogle Scholar
  56. 56.
    D. T. Terwilliger, J. H. Beynon, and R. G. Cooks, Proc. R. Soc. 341, 135 (1974).CrossRefGoogle Scholar
  57. 57.
    G. W. McClure, Phys. Rev. 140, A769 (1965).Google Scholar
  58. 58.
    I. Sauers, R. L. Fitzwilson, J.C. Ford, and E.W. Thomas, Phys.Rev. A 6, 1418 (1972).CrossRefGoogle Scholar
  59. 59.
    J. Guidini, C. R. Acad. Sci. (Paris) 253, 829 (1961).Google Scholar
  60. 60.
    R. Caudano and J. M. Delfosse, J. Phys. B 1, 813 (1968).CrossRefGoogle Scholar
  61. 61.
    F. P. G. Valckx and P. Verveer, J. Phys. (Paris) 27, 480 (1966).CrossRefGoogle Scholar
  62. 62.
    D. K. Gibson and J. Los, Physica 35, 258 (1967).CrossRefGoogle Scholar
  63. 63.
    S. J. Anderson and J. B. Swan, Phys. Lett. 48A, 435 (1974).Google Scholar
  64. 64.
    S. J. Anderson, J. Chem. Phys. 60, 3278 (1974).CrossRefGoogle Scholar
  65. 65.
    P. G. Fournier, Bull. Am. Phys. Soc. Ser. II 19, 447 (1974).Google Scholar
  66. 66.
    F. Brouillard, W. Claeys, J. Delfosse, A. Oliver, and G. Poulaert, Abstracts IXth ICPEAC (J. S. Risley and R. Geballe, eds.), University of Washington Press, Seattle, 1975, p. 713.Google Scholar
  67. 67.
    H. H. Michels, J. Chem. Phys. 44, 3834 (1966).CrossRefGoogle Scholar
  68. 68.
    T. A. Green, H. H. Michels, J. C. Browne, and M. M. Madsen, J. Chem. Phys. 61, 5186, 5198 (1974).CrossRefGoogle Scholar
  69. 69.
    J. Schopman and J. Los, Physica 48, 190 (1970).CrossRefGoogle Scholar
  70. 70.
    H. K. Schoenebeck, Z. Phys. 177, 111 (1964).CrossRefGoogle Scholar
  71. 71.
    J. Schopman, J. Los, and J. Maas, Physica 51, 113 (1971).CrossRefGoogle Scholar
  72. 72.
    J. C. Houver, J. Baudon, M. Abignoli, M. Barat, P. Fournier, and J. Durup, Int. J. Mass Spectrom. Ion Phys. 4, 137 (1970).CrossRefGoogle Scholar
  73. 73.
    J. Schopman and J. Los, Physica 51, 132 (1971).CrossRefGoogle Scholar
  74. 74.
    W. Seibt, Abstracts Vlth ICPEAC (I. Amdur, ed), MIT Press, Cambridge, Massachusetts, 1969, p. 803.Google Scholar
  75. 75.
    Pham Dông and J. Durup, Chem. Phys. Lett. 5, 340 (1970).CrossRefGoogle Scholar
  76. 76.
    H. D. Smyth, Proc. R. Soc. A 104, 121 (1923).CrossRefGoogle Scholar
  77. 77.
    H. D. Smyth, Rev. Mod. Phys. 3, 347 (1931).CrossRefGoogle Scholar
  78. 78.
    H. D. Hagstrum and J. T. Tate, Phys. Rev. 59, 354 (1941).CrossRefGoogle Scholar
  79. 79.
    J. A. Hippel, R. E. Fox, and E. U. Condon, Phys. Rev. 69, 347 (1946).CrossRefGoogle Scholar
  80. 80.
    T. F. Moran, F. C. Petty, and A. F. Hedrick, J. Chem. Phys. 51, 2112 (1969).CrossRefGoogle Scholar
  81. 81.
    S. E. Kuprianov, Sov. Phys. Tech. Phys. 9, 659 (1964).Google Scholar
  82. 82.
    P. G. Fournier, C. A. van de Runstraat, T. R. Govers, J. Schopman, F. J. de Heer, and J. Los, Chem. Phys. Lett. 9, 426 (1971).CrossRefGoogle Scholar
  83. 83.
    W. Schultz, B. Meierjohann, W. Seibt, and H. Ewald, in Recent Developments in Mass Spectrometry (K. Ogata and T. Hayakwa, eds.), Univ. of Toyko Press, Tokyo, 1970, p. 939.Google Scholar
  84. 84.
    D. L. Albritton, A. L. Schmeltekopf, and R. N. Zare, Diatomic Intensity Factors, John Wiley, in preparation.Google Scholar
  85. 85.
    C. A. van de Runstraat, F. J. de Heer, and T. R. Govers, Chem. Phys. 3, 431 (1974).CrossRefGoogle Scholar
  86. 86.
    D. L. Albritton, A. L. Schmeltekopf, and E. E. Ferguson, Abstracts Vlth ICPEAC (I. Amdur, ed.), MIT Press, Cambridge, Massachusetts, 1969, p. 331.Google Scholar
  87. 87.
    A. E. Douglas, Can. J. Phys. 30, 302 (1952).CrossRefGoogle Scholar
  88. 88.
    P. K. Carroll, Can. J. Phys. 37, 880 (1959).CrossRefGoogle Scholar
  89. 89.
    R. F. Holland and W. B. Maier, II, J. Chem. Phys. 55, 1299 (1971).CrossRefGoogle Scholar
  90. 90.
    T. R. Govers, C. A. van de Runstraat, and F. J. de Heer, Chem. Phys. 9, 285 (1975).CrossRefGoogle Scholar
  91. 91.
    T. R. Govers, F. C. Fehsenfeld, D. L. Albritton, P. G. Fournier, and J. Fournier, Chem. Phys. Lett. 26, 134 (1974).CrossRefGoogle Scholar
  92. 92.
    E. E. Ferguson, Rev. Geophys. Space Phys. 12, 703 (1974).CrossRefGoogle Scholar
  93. 93.
    J. Tellinghuisen and D. L. Albritton, Chem. Phys. Lett. 31, 91 (1974).CrossRefGoogle Scholar
  94. 94.
    A. L. Roche and H. Lefebvre Brion, Chem. Phys. Lett. 32, 155 (1975).CrossRefGoogle Scholar
  95. 95.
    J. Schopman, P. G. Fournier, and J. Los, Physica 63, 518 (1973).CrossRefGoogle Scholar
  96. 96.
    J. Schopman, A. K. Barua, and J. Los, Phys. Lett. 29A, 112 (1969).Google Scholar
  97. 97.
    J. M. Peek, Physica 64, 93 (1973).CrossRefGoogle Scholar
  98. 98.
    H. F. Helbig, D. B. Millis, and L. W. Todd, Phys. Rev. 2, 771 (1970).CrossRefGoogle Scholar
  99. 99.
    L. Wolniewicz, J. Chem. Phys. 43, 1087 (1965).CrossRefGoogle Scholar
  100. 100.
    L. Gottdiener and J. N. Murrell, Mol. Phys. 25, 1041 (1973).CrossRefGoogle Scholar
  101. 101.
    R. B. Bernstein, Chem. Phys. Lett. 25, 1 (1974).CrossRefGoogle Scholar
  102. 102.
    J. L. Dunham, Phys. Rev. 41, 721 (1932).CrossRefGoogle Scholar
  103. 103.
    W. C. Stwalley, in Energy, Structure and Reactivity (D. W. Smith and W. B. McRae, eds.), Wiley, New York, 1973, p. 259.Google Scholar
  104. 104.
    J. B. Ozenne, Pham Dông, and J. Durup, Chem. Phys. Lett. 17, 422 (1972).CrossRefGoogle Scholar
  105. 105.
    N. P. F. B. van Asselt, J. G. Maas, and J. Los, Chem. Phys. Lett. 24, 555 (1974).CrossRefGoogle Scholar
  106. 106.
    J. Durup, 21st Annual Meeting on Mass Spectrometry and Allied Topics, San Francisco, May 1973, p. 109.Google Scholar
  107. 107.
    G. H. Dunn, Phys. Rev. A 5, 1726 (1972).CrossRefGoogle Scholar
  108. 108.
    G. H. Dunn, JILA Report No. 92, JILA, Boulder, Colorado, 1968.Google Scholar
  109. 109.
    R. S. Mulliken, J. Chem. Phys. 55, 309 (1971).CrossRefGoogle Scholar
  110. 110.
    R. S. Mulliken, J. Chem. Phys. 33, 247 (I960).Google Scholar
  111. 111.
    J. N. Murrel and J. M. Taylor, Mol. Phys. 16, 609 (1969).CrossRefGoogle Scholar
  112. 112.
    S. Cohen, J. R. Hiskes, and R. J. Riddell, Jr., Phys. Rev. 119, 1025 (1960).CrossRefGoogle Scholar
  113. 113.
    G. H. Dunn, J. Chem. Phys. 44, 2592 (1966).CrossRefGoogle Scholar
  114. 114.
    F. von Busch and G. H. Dunn, Phys. Rev. A 5, 1726 (1972).CrossRefGoogle Scholar
  115. 115.
    R. N. Zare, Mol. Photochem. 4, 1 (1972).Google Scholar
  116. 116.
    G. Hancock and K. R. Wilson, in Fundamental and Applied Laser Physics, Proc. Esfahan Symposium, Esfahan, Iran, 1971 (M. Feld, W. Kurnit, and A. Javan, eds.), Wiley, New York, 1972, and references cited therein.Google Scholar
  117. 117.
    K. C. Smyth, J. A. Schiavone, and R. S. Freund, J. Chem. Phys. 60, 1358 (1974), and references cited therein.CrossRefGoogle Scholar
  118. 118.
    Pham Dông and M. Bizot, Int. J. Mass Spectrom. Ion Phys. 10, 227 (1972/73).Google Scholar
  119. 119.
    M. Roussel and A. Julienne, Int. J. Mass Spectrom. Ion Phys. 9, 463 (1972).CrossRefGoogle Scholar
  120. 120.
    R. Locht, J. Schopman, H. Wankenne, and J. Momigny, Chem. Phys. 7, 393 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. Los
    • 1
  • T. R. Govers
    • 2
  1. 1.F.O.M.-Instituut voor Atoom- en MolecuulfysicaAmsterdam/WgmThe Netherlands
  2. 2.Laboratoire de R ésonnance Électronique et Ionique (part of the Laboratoire de Physico-chimie des Rayonnements, associated with the C.N.R.S.)Université de Paris-SudOrsayFrance

Personalised recommendations