Skip to main content

Double Electron Transfer and Related Reactions

  • Chapter
Collision Spectroscopy

Abstract

When a beam of fast positive ions passes through a gaseous target, processes leading to the formation of negative ions are observed among many others. The main purpose of this chapter is to examine and to discuss what information can be obtained on the states of the ionized projectile or of the ionized target by measuring the translational energy spectra of the resulting fast negative ions. The cross section and mechanism of double electron transfer have been discussed in Chapter 2, and the use of this type of reaction as a source of negative ion mass spectra is presented in Chapter 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. C. Witteborn and D. E. Ali, Bull Am. Phys. Soc. 16, 208 (1971) and private communication.

    Google Scholar 

  2. P. Fournier, J. Appell, F. C. Fehsenfeid, and J. Durup, J. Phys. B: At. Mol Phys. 5, L58, 1810 (1972).

    Article  Google Scholar 

  3. J. Appel, Thèse de doctorat d’Etat, Université de Paris-Sud, Orsay, 1972.

    Google Scholar 

  4. J. Appell, J. Durup, F. C. Fehsenfeld, and P. Fournier, J. Phys. B: At. Mol Phys. 6, 197 (1973).

    Article  CAS  Google Scholar 

  5. J. Appell, J. Durup, F. C. Fehsenfeld, and P. Fournier, J. Phys. B. At. Mol. Phys. 7, 406 (1974).

    Article  CAS  Google Scholar 

  6. P. Fournier, R. E. March, C. Benoit, T. R. Govers, J. Appell, F. C. Fehsenfeld, and J. Durup, VIII ICPEAC, Belgrade, 753 (1973); (b) P. Fournier, C. Benoit, J. Durup, and R. E. March, C.R. Acad. Sci. 278, 1039 (1974).

    Google Scholar 

  7. F. C. Fehsenfeld, J. Appell, P. Fournier, and J. Durup, J. Phys. B: At. Mol. Phys. 6, L268 (1973); (b) Unpublished results of the present author.

    Google Scholar 

  8. T. Keough, J. H. Beynon, and R. G. Cooks, J. Am. Chem. Soc. 95, 1965 (1973); (b) Int. J. Mass Spectrom. Ion Phys. 16, 417 (1975).

    Article  Google Scholar 

  9. H. S. W. Massey, Rep. Progr. Phys. 12, 248 (1949); (b) H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Oxford Univ. Press, London, 1952.

    Article  CAS  Google Scholar 

  10. J. B. Hasted, Physics of Atomic Collisions, Butterworth, London, 1972.

    Google Scholar 

  11. J. B. Hasted, Adv. At. Mol Phys. 4, 237 (1968).

    Article  CAS  Google Scholar 

  12. J. B. Hasted, Proc. R. Soc. A 205, 421 (1951); A 212, 235 (1952).

    Article  CAS  Google Scholar 

  13. E. W. McDaniel, Collision Phenomena in Ionized Gases, Wiley, New York, 1964.

    Google Scholar 

  14. J. B. Hasted, J. Appl. Phys. 30, 25 (1959).

    Article  Google Scholar 

  15. S. K. Allison and M. Garcia Munoz, in Atomic and Molecular Processes (D. R. Bates, ed.), Academic Press, New York, 1962, p. 722.

    Google Scholar 

  16. N. V. Fedorenko, Sov. Phys. Tech. Phys. 15, 1947 (1971).

    Google Scholar 

  17. H. Tawara and A. Russek, Rev. Mod. Phys. 45, 178 (1973).

    Article  CAS  Google Scholar 

  18. V. V. Afrosimov, Yu. A. Mamaev, N. M. Panov, and N. V. Fedorenko, Sov. Phys. Tech. Phys. 14, 109 (1969).

    Google Scholar 

  19. V. V. Afrosimov, Yu. A. Mamaev, M. N. Panov, and N. V. Fedorenko, Sov. Phys. JETP 28, 52 (1969).

    Google Scholar 

  20. V. V. Afrosimov, G. A. Leiko, Yu. A. Mamaev, and M. N. Panov, Sov. Phys. JETP 29, 648 (1969).

    Google Scholar 

  21. V. V. Afrosimov, Zh. Eksper. Teo. Fiz SSSR 62, 2049 (1972).

    CAS  Google Scholar 

  22. R. J. McNeal and J. H. Bireley, Rev. Geophys. Space Phys. 11, 633 (1973).

    Article  CAS  Google Scholar 

  23. J. Durup, J. Appell, F. C. Fehsenfeld, and P. Fournier, J. Phys. B: At. Mol Phys. 6, L110, 1810 (1973).

    Google Scholar 

  24. J. Durup, P. Fournier, and D. Pham, Int. J. Mass Spectrom. Ion Phys. 2, 311 (1969).

    Article  CAS  Google Scholar 

  25. C. Moore, Atomic Energy Levels, Natl. Bur. Stand., Washington, D.C., 1949.

    Google Scholar 

  26. P. Fournier, C. Benoit, T. R. Govers, and R. E. March, to be published.

    Google Scholar 

  27. P. Fournier, J. Appell, C. Benoit, J. Durup, F. C. Fehsenfeld, and R. E. March, to be published.

    Google Scholar 

  28. P. G. Burke, Adv. At. Mol. Phys. 4, 173 (1968).

    Article  CAS  Google Scholar 

  29. G. W. F. Drake, Phys. Rev. Lett. 24, 126 (1970).

    Article  CAS  Google Scholar 

  30. C. L. Pekeris, Phys. Rev. 126, 1470 (1962).

    Article  CAS  Google Scholar 

  31. W. Mehlhorn, Z. Phys. 160, 247 (1960).

    Article  CAS  Google Scholar 

  32. D. Stalherm, B. Cleff, H. Hillig, and W. Mehlhorn, Z Naturforsch. 24a, 1728 (1969).

    Google Scholar 

  33. W. A. Moddeman, J. A. Carlson, M. O. Krause, B. P. Pullen, W. E. Bull, and G. K. Schweitzer, J. Chem. Phys. 55, 2317 (1971).

    Article  CAS  Google Scholar 

  34. J. Siegbahn, C. Nordling, G. Johansson, J. Heelman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, ESCA Applied to Free Molecules, North-Holland Publ., Amsterdam, 1969.

    Google Scholar 

  35. R. Spohr, T. Bergmark, N. Magnusson, L. O. Werme, C. Nordling, and J. Siegbahn, Phys. Scripta 2, 31 (1970).

    Article  CAS  Google Scholar 

  36. E. Wigner, Nachr. Akad. Wiss. Goettingen, Math. Phys. Kl IIa, 325 (1927).

    Google Scholar 

  37. J. H. Moore, Jr., Phys. Rev. A 8, 2359 (1973).

    Article  CAS  Google Scholar 

  38. For a discussion on the diradical-type triplet states, see, e.g., L. Salem and C. Rowland, Angew. Chem. 11, 92 (1972).

    Article  CAS  Google Scholar 

  39. T. E. Sharp, LMSC5. 10.69.9., Lockheed Palo Alto Research Lab., Palo Alto, California, 1969.

    Google Scholar 

  40. B. L. Moiseiwitsch, Adv. At. Mol Phys. 1, 61 (1965).

    Article  Google Scholar 

  41. W. A. Goddard III, D. L. Huestis, D. C. Cartwright, and S. Trajmar, Chem. Phys. Lett. 11, 329 (1971).

    Article  CAS  Google Scholar 

  42. D. C. Cartwright, S. Trajmar, H. William, and D. L. Huestis, Phys. Rev. Lett. 27, 704 (1971).

    Article  CAS  Google Scholar 

  43. J. Durup, Chem. Phys. 2, 226 (1973).

    Article  CAS  Google Scholar 

  44. F. H. Dorman and J. D. Morrison, J. Chem. Phys. 35, 575 (1961); 39, 1906 (1963).

    Article  CAS  Google Scholar 

  45. A. C. Hurley, J. Mol Spectrosc. 9, 18 (1962).

    Article  CAS  Google Scholar 

  46. J. Appell and J. Horsley, J. Chem. Phys. 60, 3445 (1974).

    Article  CAS  Google Scholar 

  47. T. Ast, J. H. Beynon, and R. G. Cooks, J. Am. Chem. Soc. 94, 6611 (1972).

    Article  CAS  Google Scholar 

  48. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. III, van Nostrand-Reinhold, Princeton, New Jersey, 1966.

    Google Scholar 

  49. D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, Molecular Photoelectron Spectroscopy, Wiley-Interscience, New York, 1970.

    Google Scholar 

  50. V. Dose and R. Gunz, J. Phys. B: At. Mol Phys. 5, 1412 (1972).

    Article  CAS  Google Scholar 

  51. B. R. Turner, J. A. Rutherford, and D. M. J. Compton, J. Chem. Phys. 48, 1602 (1968).

    Article  CAS  Google Scholar 

  52. L. M. Branscomb, in Atomic and Molecular Processes (D. R. Bates, ed.), Academic Press, New York, 1962, p. 100; B. Steiner, in Case Studies in Atomic Physics II, (E. W. McDaniel and M. R. C. McDowell, eds.), North-Holland Publ., Amsterdam, 1972, p. 483; W. C. Lineberger and B. J. Woodward, Phys. Rev. Lett. 25, 424 (1970); H. Hotop, T. A. Patterson, and W. C. Lineberger, Phys. Rev. A 8, 762 (1973); H. Hotop, R. A. Bennett, and W. C. Lineberger, J. Chem. Phys. 58, 2373 (1973); H. Hotop and W. C. Lineberger, ibid. 58, 2379 (1973).

    Google Scholar 

  53. M. W. Siegel, R. J. Celotta, J. L. Hall, J. Levine, and R. A. Benneth, Phys. Rev. A 6, 607 (1972); R. J. Celotta, R. A. Bennett, J. L. Hall, M. W. Siegel, and J. Levine, ibid. 6, 631 (1972).

    Article  CAS  Google Scholar 

  54. C. Benoit and J. A. Horsley, Mol Phys. 30, 557 (1975).

    Article  CAS  Google Scholar 

  55. M. Durup, G. Parlant, J. Appell, J. Durup, and J. B. Ozenne, Chem. Phys., in press (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Appell, J. (1978). Double Electron Transfer and Related Reactions. In: Cooks, R.G. (eds) Collision Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3955-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3955-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3957-1

  • Online ISBN: 978-1-4613-3955-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics