Skip to main content

Interactions of Adenosine with other Agents

  • Chapter
Regulatory Function of Adenosine

Part of the book series: Developments in Pharmacology ((DIPH,volume 2))

Abstract

The concept that purines might modify the responses of cells to other agonists can be traced back to the original observations of RaIl and his colleagues [1, 2]. It was found that adenosine not only would elevate the levels of cyclic AMP in slices of guinea pig cerebral cortex but also would potentiate the increase of cyclic AMP produced by norepinephrine [1–3]. A large amount of evidence has since accumulated suggesting that endogenous purines have a variety of effects that may reflect physiological roles [4, 5], and consequently it is necessary to consider that an important function of purines may be to regulate the sensitivity of receptors for other endogenous agents or exogenously administered drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sattin A, Rail TW: The effect of adenosine and adenine nucleotides on the cyclic AMP content of guinea pig cerebral cortex slices. Mol Pharmacol 6: 13–23, 1970.

    PubMed  CAS  Google Scholar 

  2. Sattin A, Rail TW, Zanella J: Regulation of cyclic AMP levels in guinea-pig cerebral cortex by interaction of a-adrenergic and adenosine receptor activity. J Pharmacol Exp Ther 192: 22–32, 1975.

    PubMed  CAS  Google Scholar 

  3. Daly JW: The nature of receptors regulating the formation of cyclic AMP in brain tissue. Lift Sci 18: 1349–1358, 1976.

    Article  CAS  Google Scholar 

  4. Stone TW: Physiological roles for adenosine and A TP in the nervous system. Neuroscience 6: 523–555, 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Fredholm BB, Hedqvist P: Modulation of neurotransmission by purine nucleotides and nucleosides. Biochem Pharmacol 29: 1635–1643, 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Holck MI, Marks BH: Purine nucleoside and nucleotide interactions on normal and subsensitive a-adrenoreceptor responsiveness in guinea pig vas deferens. J Pharmacol Exp Ther 205: 104–117, 1978.

    PubMed  CAS  Google Scholar 

  7. Smythies JR: Molecular mechanisms of adrenergic receptors. J Theor Bioi 35: 93–102, 1972.

    Article  CAS  Google Scholar 

  8. Fredholm BB: Release of adenosine-like material from isolated perfused dog adipose tissue following sympathetic nerve stimulation and its inhibition by adrenergic a-receptor blockade. Acta Physiol Scand 96: 422–430, 1976.

    Article  CAS  Google Scholar 

  9. Hedqvist P, Fredholm BB: Effects of adenosine on adrenergic neurotransmission: Prejunctional inhibition and post junctional enhancement. Arch Pharmacol 293: 217–224, 1976.

    Article  CAS  Google Scholar 

  10. Luchelli-Fortis MA, Fredholm BB, Langer SZ: Evidence against the presence of presynaptic inhibitory adenosine receptors in the cat nictitating membrane. J Pharmacol Exp Ther 219: 235–242, 1981.

    PubMed  CAS  Google Scholar 

  11. Fain JN, Malbon CC: Regulation of adenyl ate cyclase by adenosine. Mol Cell Biochem 25: 143–169, 1979.

    Article  PubMed  CAS  Google Scholar 

  12. Braun S, Levitzki A: The attenuation of epinephrine-dependent adenylate cyclase by adenosine and the characteristics of the adenosine stimulatory and inhibitory sites. Mol Pharmacol 16: 737–748, 1979.

    PubMed  CAS  Google Scholar 

  13. Endoh M, Yamashita S: Adenosine antagonizes the positive inotropic action mediated via β, not α-adrenoceptors in rabbit papillary muscle. Eur J Pharmacol 65: 445–448, 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Kazić T, Milosavljevic D: Influence of adenosine, cyclic AMP on responses of the isolated terminal guinea pig ileum to electrical stimulation. Arch lnt Pharmacol 223: 187–195, 1976.

    Google Scholar 

  15. Nastuk WL: Cholinergic receptor desensitization, in Cottrell GA, Usherwood PNR (eds): Synapses. London, Blackie, 1977, pp 177–201.

    Google Scholar 

  16. Abood LG: Interrelationships between phosphates and calcium in bioelectric phenomena. Int Rev Neurobiol 9: 223–261, 1966.

    Article  PubMed  CAS  Google Scholar 

  17. Buchthal F, Kahlson G: Application of ATP and related compounds to mammalian striated and smooth muscle. Nature 154: 178–179, 1944.

    Article  CAS  Google Scholar 

  18. Rail TW: Regulation of cyclic AMP accumulation in brain tissue, in Baer HP, Drummond GI (eds): Physiological and Regulatory Rolesfor Adenosine and Adenine Nucleotides. New York, Raven Press, 1979, pp 217–227.

    Google Scholar 

  19. Ewald DA: Potentiation of post junctional cholinergic sensitivity of rat diaphragm muscle by high-energy adenine nucleotides. J Membr Biol 29: 47–65, 1976.

    Article  PubMed  CAS  Google Scholar 

  20. Akasu T, Hirai K, Koketsu K: Increase of acetylcholine receptor sensitivity by ATP. Br J Pharmacol 74: 505–507, 1981.

    PubMed  CAS  Google Scholar 

  21. Maitre M, Ciesielski L, Lehmann A, Kempf E, Mandel P: Protective effect of adenosine and nicotinamide against audiogenic seizure. Biochem Pharmacol 23: 2807–2816, 1974.

    Article  PubMed  CAS  Google Scholar 

  22. Paul SM, Marangos PJ, Goodwin FK, Skolnick P: Brain-specific benzodiazepine receptors and putative endogenous benzodiazepine-Iike compounds. Bioi Psychiatry 15: 407–428, 1980.

    CAS  Google Scholar 

  23. Pull I, McIlwain H: Adenine derivatives as neurohumoral agents in the brain. Biochem J 130: 975–981, 1972.

    PubMed  CAS  Google Scholar 

  24. Macdonald JF, Barker JL, Paul SM, Marangos PJ, Skolnick P: Inosine may be an endogenous ligand for benzodiazepine receptors in cultured spinal neurons. Science 205: 715–717, 1979.

    Article  PubMed  CAS  Google Scholar 

  25. Davies LP, Cook AF, Poonian M, Taylor KM: Displacement of [3H]diazepam binding in rat brain by I-methylisoguanosine. Life Sci 26: 1089–1098, 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Phillis JW, Bender AS, Wu PH: Benzodiazepines inhibit adenosine uptake into rat brain synaptosomes. Brain Res 195: 494–498, 1980.

    Article  PubMed  CAS  Google Scholar 

  27. Wu PH, Phillis JW, Bender AS: Inhibition of [3H]diazepam binding to rat brain cortical synaptosomal membranes by adenosine uptake blockers. EurJ Pharmaco/ 65: 459–460, 1980.

    Article  CAS  Google Scholar 

  28. Dowdle EB, Maske R: The effects of dipyridamole on the guinea pig ileal longitudinal muscle-myenteric plexus preparation. Br J Pharmacol 71: 235–244, 1980.

    PubMed  CAS  Google Scholar 

  29. Ho IK, Loh HH, Way EL: Cyclic AMP antagonism of morphine analgesia. J Pharmacol Exp Ther 185: 336–340, 1973.

    PubMed  CAS  Google Scholar 

  30. Sawynok J, Jhamandas KH: Inhibition of acetylcholine release from cholinergic nerves by adenosine, adenine nucleotides and morphine: Antagonism by theophylline. J Pharmacol Exp Ther 197: 379–390, 1976.

    PubMed  CAS  Google Scholar 

  31. Jhamandas K, Sawynok J, Sutak M: Antagonism of morphine action on brain acetylcholine release by methylxanthines and calcium. Eur J Pharmacol 49: 309–312, 1978.

    Article  PubMed  CAS  Google Scholar 

  32. Fredholm BB, Vernet L: Morphine increases depolarization induced purine release from hypothalamic synaptosomes. Acta Physiol Scand 104: 502–504, 1978.

    Article  PubMed  CAS  Google Scholar 

  33. Phillis JW, Jiang ZG, Chelack BJ, Wu PH: Morphine enhances adenosine release from in vivo rat cerebral cortex. EurJ Pharmacol 65: 97–100, 1979.

    Article  Google Scholar 

  34. Stone TW: The effects of morphine and met-enkephalin on the release of purines from cerebral cortex slices of rats and mice. Br J Pharmacol 74: 171–176, 1981.

    PubMed  CAS  Google Scholar 

  35. Perkins MN, Stone TW: Blockade of striatal neurone responses to morphine by aminophylline: Evidence for adenosine mediation of opiate action. Br J Pharmacol 69: 131–137, 1980.

    PubMed  CAS  Google Scholar 

  36. Sawynok J, Jhamandas KH: Interactions of methylxanthines, nonxanthine phosphodiesterase inhibitors and calcium with morphine in guinea-pig myenteric plexus. Can J Phys Pharm 57: 853–859, 1979.

    Article  CAS  Google Scholar 

  37. Gailant CA, Clement JG: Methylxanthines antagonise adenosine but not morphine inhibition in guinea pig ileum. Can J Physiol Pharmacol 59: 886–889, 1981.

    Article  Google Scholar 

  38. Vizi ES, Somogyi GT, Magyar K: Evidence that morphine and opioid pep tides do not share a common pathway with adenosine in inhibitory acetylcholine release from isolated intestine. J Auton Pharmacol 1: 413–419, 1981.

    Article  PubMed  CAS  Google Scholar 

  39. Stone TW: Theophylline does not affect morphine inhibition of the isolated vas deferens. Br J Pharmacol 73: 787–789, 1981.

    PubMed  CAS  Google Scholar 

  40. Stone TW: Actions of adenine dinucleotides on the vas deferens, guinea pig taenia caeci and bladder. EurJ Pharmacol 75: 93–102, 1981.

    Article  CAS  Google Scholar 

  41. Duggan A W, Griersmith BT: Methylxanthines, cyclic AMP and the spinal transmission of nociceptive information. Br J Pharmacol 67: 51–58, 1979.

    PubMed  CAS  Google Scholar 

  42. Butt NM, Collier HOJ, Cuthbert NJ, Francis DL, Saeed SA: Mechanism of quasi-morphine withdrawal behaviour induced by methylxanthines. EurJ Pharmacol 53: 375–378, 1979.

    Article  CAS  Google Scholar 

  43. Sattin A: Increase in the content of cyclic AMP in mouse forebrain during seizures and prevention by methylxanthines. J Neurochem 18: 1087–1096, 1971.

    Article  PubMed  CAS  Google Scholar 

  44. Vernikos-Daniellis J, Harris CG: The effects of in vitro and in vivo caffeine, theophylline and hydrocortisone on the phosphodiesterase activity of the pituitary, heart and cerebral cortex of the rat. Proc Soc Exp Bioi Med 128: 1016–1020, 1968.

    Google Scholar 

  45. Yarbrough GG, McGuffin-Clineschmidt JC: In vivo behavioural assessment of CNS purinergic receptors. EurJ Pharmacol 76: 137–144, 1981.

    Article  CAS  Google Scholar 

  46. Jurna L: Aminophylline differentiates between the depressant effects of morphine on the spinal nociceptive reflex and on the spinal ascending activity evoked from afferent C fibres. Eur J Pharmacol 71: 393–400, 1981.

    Article  PubMed  CAS  Google Scholar 

  47. Lewis JJ, Van Petten GR: The effect of antidepressive drugs on the levels of adenine nucleotides, inorganic phosphate and phosphocreatine in the rat brain. Br J Pharmacol 20: 462–470, 1963.

    CAS  Google Scholar 

  48. Huang M, Daly JW: Adenosine elicited accumulation of cyclic AMP in brain slices: Potentiation by agents which inhibit uptake of adenosine. Life Sci 14: 489–503, 1974.

    Article  PubMed  CAS  Google Scholar 

  49. Sattin A, Stone TW, Taylor DA: Biochemical and electro pharmacological studies with tricyclic antidepressants in rat and guinea pig cerebral cortex. Life Sci 23: 2621–2626, 1978.

    Article  PubMed  CAS  Google Scholar 

  50. Stone TW, Taylor DA: Antidepressant drugs potentiate suppression by adenosine of neuronal firing in rat cerebral cortex. Neurosci Lett 11: 93–97, 1979.

    Article  PubMed  CAS  Google Scholar 

  51. Dismukes RK, Daly JW: Adaptive responses of brain cyclic AMP-generating systems to alterations in synaptic input. J Cyclic Nucleotide Res 2: 321–336, 1976.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Stone, T.W. (1983). Interactions of Adenosine with other Agents. In: Berne, R.M., Rall, T.W., Rubio, R. (eds) Regulatory Function of Adenosine. Developments in Pharmacology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3909-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3909-0_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3911-3

  • Online ISBN: 978-1-4613-3909-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics