Skip to main content

Synaptic Modulation by Adenosine: Electrophysiological and Biochemical Characteristics

  • Chapter
Regulatory Function of Adenosine

Part of the book series: Developments in Pharmacology ((DIPH,volume 2))

Abstract

The concept of purinergic modulation of CNS activity by adenine compounds has recently attracted substantial experimental attention. This notion was originally formulated on the basis of observations that certain purine compounds are capable of depressing neuronal activity and are also potent stimulants of cAMP synthesis in the brain [1, 2]. More recently, the identification of multiple adenosine receptors and the availability of radiolabeled ligands with high specific activity has broadened the conceptual and technical approaches within this field. A correlative approach to these different sets of data was one of the primary goals of our current experiments. On the basis of evidence gathered from these technically disparate avenues of approach, a better understanding of purine modulation of CNS function has begun to emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sattin A, Rail TW: Cyclic AMP content of guinea pig cerebral cortex slices. Mol Pharmacol 6: 13–23, 1970.

    PubMed  CAS  Google Scholar 

  2. Phillis JW, Kostopoulos GK, Limacher JJ: Depression of corticospinal cells by various purines and pyrimidines. Can J Physiol Pharmacol 52: 1226–1229, 1974.

    Article  PubMed  CAS  Google Scholar 

  3. Schubert P, Mitzdorf U: Analysis and quantitative evaluation of the depressive effect of adenosine on evoked potentials in hippocampal slices. Brain Res 172: 186–190, 1979.

    Article  PubMed  CAS  Google Scholar 

  4. Dunwiddie TV, Hoffer BJ: Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Br J Pharmacol 69: 59–68, 1980.

    PubMed  CAS  Google Scholar 

  5. Siggins G, Schubert P: Adenosine depression of hippocampal neurons in vitro: An intracellular study of dose-dependent actions on synaptic and membrane potentials. Neurosci Lett 23: 55–60, 1981.

    Article  PubMed  CAS  Google Scholar 

  6. Fredholm BB, Hedqvist P: Modulation of neurotransmission by purine nucleotides and nuc1eosides. Bioehem Pharmacol 29: 1635–1643, 1980.

    Article  CAS  Google Scholar 

  7. Phillis JW, Edstrom JP., Kostopoulos GK., Kirkpatrick JR: Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex. Can J Physiol Pharmacal 57: 1289–1312, 1979.

    Article  CAS  Google Scholar 

  8. Stone TW. Taylor DA: Effects of adenosine and related compounds on an inhibitory process in rat cerebral cortex. Exp Neural 70: 556–566, 1980.

    Article  CAS  Google Scholar 

  9. Lee K. Schubert P: Modulation of an inhibitory circuit by adenosine and AMP in the hippocampus. Brain Res 246: 311–314, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Londos C, Cooper D., Wolff J: Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77: 2551–2554, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. van Calker D., Müller M, Hamprecht B: Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33: 999–1005, 1979.

    Article  PubMed  Google Scholar 

  12. Reddington M, Lee K, Schubert P: Depression of evoked potentials in a hippocampal slice preparation by adenosine: mediation via an A1, adenosine receptor, characterized by 3H-cyclohexyladenosine binding. Neurosci Lett 28: 275–279. 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Reddington M. Schubert P: Parallel investigations of the effects of adenosine on evoked potentials and cyclic AMP accumulation in hippocampus slices of the rat. Neurosci Lett 14: 37–42, 1979.

    Article  PubMed  CAS  Google Scholar 

  14. Bruns RF, Daly JW., Snyder SH: Adenosine receptors in brain membranes: Binding of N6-cyclohexyl [3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci USA 77: 5547–5551, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Schwabe U, Trost T: Characterization of adenosine receptors in rat brain by (—)[3H]N6-phenylisopropyladenosine. Naunyn Schmiedebergs Arch Pharmacal 313: 179–187, 1980.

    Article  CAS  Google Scholar 

  16. Williams M, Risley EA: Biochemical characterization of putative purinergic receptors by using 2-chloro [3H]adenosine, a stable analog of adenosine. Proc Natl Acad Sci USA 77: 6892–6896, 1980.

    Article  PubMed  CAS  Google Scholar 

  17. Wu PH, Phillis JW, Balls K, Rinaldi B: Specific binding of-[2H]chloroadenosine to rat brain cortical membranes. Can J Physiol Pharmacal 58: 576–579, 1980.

    Article  CAS  Google Scholar 

  18. Kreutzberg GW, Barron KD, Schubert P: Cytochemical localization of 5′-nucleotidase in glial plasma membranes. Brain Res 158: 247–257, 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Barberis C, McIlwain H: 5-adenine mononucleotides in synaptosomal preparations from guinea pig neocortex: Their change on incubation, superfusion and stimulation. J Neuroehem 26: 1021–1025, 1976.

    Article  Google Scholar 

  20. Lee KS, Schubert P, Emmert H, Kreutzberg GW: Effect of adenosine versus adenine nuclcotides on evoked potentials in a rat hippocampal slice preparation. Neurosci Lett 23: 309–314, 1981a.

    Article  PubMed  CAS  Google Scholar 

  21. Dunwiddie TV: Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21: 541–548, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Phillis JW, and Wu PH: The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16: 187–239, 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Berne RM, Rubio R, Curnish RR: Release of adenosine from ischaemic brain. Circ Res 35: 262–272, 1974.

    CAS  Google Scholar 

  24. Schubert P, Kreutzberg G: Axonal transport of adenosine and uridine derivatives and transfer to postsynaptic neurones. Brain Res 76: 526–530, 1974.

    Article  PubMed  CAS  Google Scholar 

  25. Schubert P, Kreutzberg GW: Dendritic and axonal transport of nucleoside derivatives in single motoneurons and release from dendrites. Brain Res 90: 319–323, 1975.

    Article  PubMed  CAS  Google Scholar 

  26. Hunt SP, Künzle H: Bidirectional movement of label and trans neuronal transport phenomena after injection of [3H] adenosine in the central nervous system. Brain Res 112: 127–132, 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Wise SP, Jones EG, Berman N: Direction and specificity of the axonal and transcellular transport of nucleosides. Brain Res 139: 197–217, 1978.

    Article  PubMed  CAS  Google Scholar 

  28. Schubert P, Rose G, Lee K, Lynch G, Kreutzberg G: Axonal release and transfer of nucleoside derivates in the entorhinal-hippocampal system: An autoradiographic study. Brain Res 134: 347–352, 1977.

    Article  PubMed  CAS  Google Scholar 

  29. Rose G, Schubert P: Release and transfer of [3H]adenosine derivatives in the cholinergic septal system. Braill Res 121: 353–357, 1977.

    Article  CAS  Google Scholar 

  30. Schubert P, Lee K, West M, Deadwyler S, Lynch G: Stimulation-dependent release of [3H]adenosine derivatives from central axon terminals to target neurones. Nature 260: 541–542, 1976.

    Article  PubMed  CAS  Google Scholar 

  31. Lee KS, Schubert P, Gribkoff V, Sherman B, Lynch G: A combined in vivo/in vitro study of the presynaptic release of adenosine derivatives in the hippocampus. J Neurochem 38: 80–83, 1981.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Schubert, P., Lee, K., Reddington, M., Kreutzberg, G. (1983). Synaptic Modulation by Adenosine: Electrophysiological and Biochemical Characteristics. In: Berne, R.M., Rall, T.W., Rubio, R. (eds) Regulatory Function of Adenosine. Developments in Pharmacology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3909-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3909-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3911-3

  • Online ISBN: 978-1-4613-3909-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics