Skip to main content

Function and induction of the microsomal heme oxygenase

  • Chapter
Enzyme Induction and Modulation

Part of the book series: Developments in molecular and cellular biochemistry ((DMCB,volume 3))

Summary

The microsomal heme oxygenase system consists of heme oxygenase and NADPH-cytochrome P-450 reductase, and is considered to play a key role in the physiological heme catabolism to yield biliverdin in animals. Heme oxygenase purified from either pig spleen or rat liver has a minimum molecular weight of 32 000, and binds heme to form a 1:1 complex which exhibits properties resembled to those of hemoglobin and myoglobin. Heme degradation in the heme oxygenase reaction proceeds essentially as a series of autocatalytic oxidation of heme which is bound to heme oxygenase. The possible mechanism of heme degradation in the heme oxygenase reaction was presented.

Heme oxygenase can be induced by heme in various tissues such as liver, kidney and macrophages, possibly in a substrate-mediated induction. Heme oxygenase, especially in the liver, has also been shown to be inducible to various extents by a number of non-heme substances including insulin, epinephrine, endotoxin, carbon disulfide, certain metal ions, diethylmaleate, bromobenzene, chlorinated benzenes, and interferon- inducing agents, and some of those non-heme substances appear to induce heme oxygenase independently of the mediation by heme. Some principal features of heme oxygenase induction by hemin and several non-heme inducers were examined comparatively mainly in pig alveolar macrophages and in rat liver, especially taking the degree of heme saturation of tryptophan pyrrolase as a probe for estimating the intracellular heme concentration in the liver. Inductions by carbon disulfide, endotoxin, insulin, and epinephrine are likely to be mediated by heme, whereas inductions by metal ions, diethylmaleate, and bromobenzene appear to be caused by some unknown mechanism unrelated to heme. The induction by apparently heme-independent inducers has some organ specificity and perhaps species specificity. In the rat, however, the heme oxygenase induced by either hemin or non-heme substances and in either liver or kidney were immunochemically identical.

Cell-free synthesis of heme oxygenase directed by polysomes isolated from either pig alveolar macrophages or livers of rats treated with various inducers were examined by a combined use of [14C] or [3H]-labeled leucine and antibodies (IgG) specific to pig spleen heme oxygenase and rat liver heme oxygenase, respectively. In both macrophage and rat liver, free polysomes were the major site of heme oxygenase synthesis and the ability of polysomes to direct synthesis of heme oxygenase was greatly increased in the induced systems. Moreover, the abilities of polysomes isolated from livers of rats treated with hemin, Cd2+, and bromobenzene were proportional to the heme oxygenase activities in respective livers from which polysomes were prepared, indicating that all these inducers enhanced the synthesis of mRN A for heme oxygenase, giving rise to increased synthesis of heme oxygenase in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris, J. W. and Kellermeyer, R. W. 1970. In: The Red Cell, rev. edn. Harvard Univ. Press, Cambridge.

    Google Scholar 

  2. Tenhunen, R., Marver, H. S. and Schmid, R. 1968. Proc. Natl. Acad. Sci. U.S.A. 61: 748–755.

    Article  PubMed  CAS  Google Scholar 

  3. Tenhunen, R., Marver, H. S. and Schmid, R. 1969. J. Biol. Chem. 244: 6388–6394.

    PubMed  CAS  Google Scholar 

  4. Tenhunen, R., Marver, H. S. and Schmid, R. 1970. J. Lab. Clin. Med. 75: 410–421.

    PubMed  CAS  Google Scholar 

  5. Pimstone, N. R., Engel, P., Tenhunen, R., Seitz, P. T., Marver, H. S. and Schmid, R. 1971. J. Clin. Invest. 50: 2042–2050.

    Article  PubMed  CAS  Google Scholar 

  6. Schmid, R. 1977. Trans. Assoc. Am. Physicians 89: 64–76.

    CAS  Google Scholar 

  7. Schmid, R. and McDonagh, A. F. 1978. In: The Metabolic Basis of Inherited Disease (Stanbury, J. B., Wyngaarden, J. B. and Fredrickson, D. S., eds.), pp. 1221–1257. McGraw-Hill, New York.

    Google Scholar 

  8. Kikuchi, G. and Yoshida, T. 1980. Trend. Biochem. Sci. 5: 323–325.

    Article  CAS  Google Scholar 

  9. Snyder, A. L. and Schmid, R. 1965. J. Lab. Clin. Med. 65: 817–824.

    PubMed  CAS  Google Scholar 

  10. Pimstone, N. R., Tenhunen, R., Seitz, P. T., Marver, H. S. and Schmid, R. 1971. J. Exp. Med. 133: 1264–1281.

    Article  PubMed  CAS  Google Scholar 

  11. Gemsa, D., Woo, C. H., Fudenberg, H. H. and Schmid, R. 1973. J. Clin. Invest. 52: 812–822.

    Article  PubMed  CAS  Google Scholar 

  12. Shibahara, S., Yoshida, T. and Kikuchi, G. 1978. Arch. Biochem. Biophys. 188. 243–250.

    Article  PubMed  CAS  Google Scholar 

  13. Shibahara, S., Yoshida, T. and Kikuchi, G. 1979. Arch. Biochem. Biophys. 197: 607–617.

    Article  PubMed  CAS  Google Scholar 

  14. Bakken, A. F., Thaler, M. M. and Schmid, R. 1972. J. Clin. Invest. 51: 530–536.

    Article  PubMed  CAS  Google Scholar 

  15. Gemsa, D., Woo, C. H., Fudenberg, H. H. and Schmid, R. 1974. J. Clin. Invest. 53: 647–651.

    Article  PubMed  CAS  Google Scholar 

  16. Bissell, D. M. and Hammaker, L. E. 1976. Arch. Biochem. Biophys. 176: 91–102.

    Article  PubMed  CAS  Google Scholar 

  17. Bissell, D. M. and Hammaker, L. E. 1977. Biochem. J. 166: 301–304.

    PubMed  CAS  Google Scholar 

  18. Maines, M. D. and Kappas, A. 1974. Proc. Natl. Acad. Sci. U.S.A. 71: 4293–4297.

    Article  PubMed  CAS  Google Scholar 

  19. Maines, M. D. and Kappas, A. 1975. J. Biol. Chem. 250: 4171–4177.

    PubMed  CAS  Google Scholar 

  20. Maines, M. D. and Kappas, A. 1976. Biochem. J. 154: 125–131.

    PubMed  CAS  Google Scholar 

  21. Maines, M. D. and Kappas, A. 1976. Proc. Natl. Acad. Sci. U.S.A. 73: 4428–4431.

    Article  PubMed  CAS  Google Scholar 

  22. Maines, M. D. and Kappas, A. 1977. Science 198: 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  23. Maines, M. D. and Kappas, A. 1977. J. Exp. Med. 146: 1286–1293.

    Article  PubMed  CAS  Google Scholar 

  24. Maines, M. D. and Kappas, A. 1977. Proc. Natl. Acad. Sci. U.S.A. 74: 1875–1878.

    Google Scholar 

  25. Meredith, P. A. and Moore, M. R. 1979. Biochem. Soc. Transac. 7: 637–639.

    CAS  Google Scholar 

  26. Ibrahim, N. G., Hoffstein, S. T. and Freedman, M. L. 1979. Biochem. J. 180: 257–263.

    PubMed  CAS  Google Scholar 

  27. Eaton, D. L., Stacey, N. H., Wong, K.-L. and Klaassen, C. D. 1980. Toxicol. Appl. Pharmacol. 55: 393–402.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenberg, D. W., Drummond, G. S., Cornish, H. C. and Kappas, A. 1980. Biochem. J. 190: 465–468.

    PubMed  CAS  Google Scholar 

  29. Rosenberg, D. W., Drummond, G. S. and Kappas, A. 1981. Mol. Pharmacol. 21: 150–158.

    Google Scholar 

  30. Drummond, G. S. and Kappas, A. 1981. J. Exp. Med. 153: 245–256.

    Article  PubMed  CAS  Google Scholar 

  31. Jarvisalo, J., Gibbs, A. H. and De Matteis, F. 1978. Mol. Pharmacol 14: 1099–1106.

    PubMed  CAS  Google Scholar 

  32. Guzelian, P. S. and Elshourbagy, N. A. 1979. Arch. Bio¬chem. Biophys. 196: 178–185.

    Google Scholar 

  33. Ariyoshi, T., Eguchi, M., Muraki, Y., Yasumatsu, H., Suetsugu, N. and Arizono, K. 1981. J. Pharm. Dyn. 4: 69–76.

    Google Scholar 

  34. El Azhary, R. and Mannering, G. J. 1979. Mol. Pharma¬col. 15: 698–707.

    Google Scholar 

  35. Granick, S., Sinclair, P., Sassa, S. and Grieninger, G. 1975. J. Biol. Chem. 250: 9215–9225.

    PubMed  CAS  Google Scholar 

  36. Granick, S. and Beale, S. I. 1978. Adv. Enzymol. 46: 33–203.

    PubMed  CAS  Google Scholar 

  37. De Matteis, F. 1978. In: Handbook of Experimental Pharmacology (De Matteis, F. and Aldridge, W. N., eds.), Vol. 44, pp. 129–155, Springer-Verlag, Berlin.

    Google Scholar 

  38. Badawy, A. A.-B. and Evans, M. 1975. Biochem. J. 150: 511–520.

    PubMed  CAS  Google Scholar 

  39. Badawy, A. A.-B. and Evans, M. 1973. Biochem. J. 136: 885–892.

    PubMed  CAS  Google Scholar 

  40. Badawy, A. A.-B. 1979. Biochem. Soc. Trans. 7: 575–583.

    Google Scholar 

  41. Welch, A. N. and Badawy, A. A.-B. 1980. Biochem. J. 192: 403–410.

    PubMed  CAS  Google Scholar 

  42. De Matteis, F. 1978. In: Handbook of Experimental Pharmacology (De Matteis, F. and Aldridge, W. N., eds.), Vol. 44, pp. 95–127. Springer-Verlag, Berlin.

    Google Scholar 

  43. Yamamoto, M., Hayashi, N. and Kikuchi, G. 1981. Arch. Biochem. Biophys. 209: 451–459.

    Article  PubMed  CAS  Google Scholar 

  44. Yoshida, T. and Kikuchi, G. 1978. J. Biol. Chem. 253: 4224–4229.

    Google Scholar 

  45. Yoshida, T. and Kikuchi, G. 1979. J. Biol. Chem. 254: 4487–4491.

    PubMed  CAS  Google Scholar 

  46. Kikuchi, G. Yoshida, T. and Ishizawa, S. 1982. In: Adv. Pharmacol. Ther. II, Toxicol. Exp. Mod. (Yoshida, H., Hagihara, Y. and Ebashi, S., eds.), Vol. 5, pp. 121–130. Pergamon Press, Oxford.

    Google Scholar 

  47. Tenhunen, R., Marver, H. S., Pimstone, N. R., Trager, W. F., Cooper, D. Y. and Schmid, R. 1972. Biochemistry 11: 1716–1720.

    Article  PubMed  CAS  Google Scholar 

  48. Lemberg, R. 1956. Rev. Pure Appl. Chem. 6: 1–23.

    Google Scholar 

  49. O’Carra, P. 1975. In: Porphyrins and Metalloporphyrins (Smith, K. M. ed.) pp. 123–153. Elsevier, Amsterdam.

    Google Scholar 

  50. Kaziro, K., Kikuchi, G. and Hanaoka, C. 1955. J. Biochem. 42: 423–437.

    Google Scholar 

  51. Yoshida, T., Noguchi, M. and Kikuchi, G. 1980. J. Biol. Chem. 255: 4418–4420.

    Google Scholar 

  52. Yoshida, T. and Kikuchi, G. 1978. J. Biol. Chem. 253: 4230–4236.

    Google Scholar 

  53. Yoshida, T., Noguchi, M., Kikuchi, G. and Sano, S. 1981. J. Biochem. 90: 125–131.

    PubMed  CAS  Google Scholar 

  54. Yoshida, T., Noguchi, M. and Kikuchi, G. 1980. J. Bio¬chem. 88: 557–563.

    CAS  Google Scholar 

  55. Yoshida, T., Noguchi, M. and Kikuchi, G. 1982. J. Biol. Chem. 257: 9345–9348.

    Google Scholar 

  56. Sjostrand, T. 1952. Acta Physiol. Scand. 26: 328–333.

    Article  PubMed  CAS  Google Scholar 

  57. Sjostrand, T. 1952. Acta Physiol. Scand. 26: 338–344.

    Article  PubMed  CAS  Google Scholar 

  58. Kikuchi, G. and Yoshida, T. 1976. Ann. Clin. Res. 8, Suppl. 17: 10–17.

    Google Scholar 

  59. Kikuchi, G., Yoshida, T. and Noguchi, M. 1982. In: Oxygenases and Oxygen Metabolism (Nozaki, M., Yamamo- to, S., Ishimura, Y., Coon, M. J., Ernster, L. and Esta- brook, R. W., eds.) Academic Press, New York, in press.

    Google Scholar 

  60. Noguchi, M., Yoshida, T. and Kikuchi, G. submitted for publication.

    Google Scholar 

  61. Noguchi, M., Yoshida, T. and Kikuchi, G. 1982. J. Bio¬chem. 91: 1479–1483.

    CAS  Google Scholar 

  62. Docherty, J. C., Masters, B. S. S., Firneisz, G. D. and Schacter, B. A. 1982. Biochem. Biophys. Res. Commun. 105: 1005–1013.

    Google Scholar 

  63. Frydman, R. B., Awruch, J., Tomaro, M. L. and Frydman, B. 1979. Biochem. Biophys. Res. Commun. 87: 928–935.

    Google Scholar 

  64. Maines, M. D. and Kappas, A. 1977. Biochemistry 16: 419–423.

    Article  PubMed  CAS  Google Scholar 

  65. Hino, Y. and Minakami, S. 1979. Biochem. J. 178: 323–329.

    PubMed  CAS  Google Scholar 

  66. Noguchi, M., Yoshida, T. and Kikuchi, G. 1979. FEBS Lett. 98: 281–284.

    Article  PubMed  CAS  Google Scholar 

  67. Yoshida, T., Noguchi, M. and Kikuchi, G. 1980. FEBS Lett. 115: 278–280.

    Article  PubMed  CAS  Google Scholar 

  68. Gemsa, D., Woo, C. H., Webb, D., Fudenberg, H. H. and Schmid, R 1975. Cell. Immunol. 15: 21–36.

    Article  PubMed  CAS  Google Scholar 

  69. Oren, R., Farnham, A. E., Saito, K., Milofsky, E. and Karnovski, M. L. 1963. J. Cell Biol. 17: 487–501.

    Article  PubMed  CAS  Google Scholar 

  70. Cohen, A. B. and Cline, M. J. 1971. J. Clin. Invest. 50: 1390–1398.

    Google Scholar 

  71. Gee, J. B. L., Khandwala, A. S. and Bell, R. W. 1974. J. Reticuloendothel. Soc. 15: 394–405.

    Google Scholar 

  72. Cline, M. J. 1975. In: The White Cell, pp. 40–70,479–492. Harvard University Press, Cambridge.

    Google Scholar 

  73. Shibahara, S., Yoshida, T. and Kikuchi, G. 1980. J. Biochem. 88: 45–50.

    PubMed  CAS  Google Scholar 

  74. Sargent, J. R. and Vadlamudi, B. P. 1968. Biochem. J. 107: 839–849.

    PubMed  CAS  Google Scholar 

  75. Okada, Y. and Omura, T. 1978. J. Biochem. 83: 1039–1048.

    PubMed  CAS  Google Scholar 

  76. Rachubinski, R. A., Verma, D. P. S. and Bergeron, J. J. M. 1980. J. Cell Biol. 84: 705–716.

    Article  PubMed  CAS  Google Scholar 

  77. Okada, Y., Frey, A. B., Guenthner, T. M., Oesch, F., Sabatini, D. D. and Kreibich, G. 1982. Eur. J. Biochem. 122: 393–402.

    Article  PubMed  CAS  Google Scholar 

  78. Ragnotti, G., Lawford, G. R., and Campbell, P. N. 1969. Biochem. J. 112: 139–147.

    PubMed  CAS  Google Scholar 

  79. Harano, T. and Omura, T. 1977. J. Biochem. 82: 1541–1549.

    PubMed  CAS  Google Scholar 

  80. Omura, T. 1979. In: The Induction of Drug Metabolism. (Estabrook, R. W. and Lindenlaub, E., eds.) pp. 161–175, F. K. Schattaner Verlag, Stuttgart New York.

    Google Scholar 

  81. De Matteis, F. 1978. Pharmac. Ther. A. 2: 693–725.

    Google Scholar 

  82. Bissell, D. M. and Hammaker, L. E. 1976. Arch. Biochem. Biophys. 176: 103–112.

    Google Scholar 

  83. Correia, M. A. and Burk, R. F. 1976. Arch. Biochem. Biophys. 177: 642–644.

    Google Scholar 

  84. Burk, R. F. and Correia, M. A. 1977. Biochem. J. 168: 105–111.

    PubMed  CAS  Google Scholar 

  85. Correia, M. A. and Burk, R. F. 1978. J. Biol. Chem. 253: 6203–6210,

    Google Scholar 

  86. Labbe, R. F. and Hubbard, N. 1961. Biochim. Biophys. Acta 52: 130–135.

    Google Scholar 

  87. Jones, M. S. and Jones, O. T. G. 1968. Biochem. Biophys. Res. Commun. 31: 977–982.

    Google Scholar 

  88. Igarashi, J., Hayashi, N. and Kikuchi, G. 1978. J. Biochem. 84: 997–1000.

    PubMed  CAS  Google Scholar 

  89. Lodola, A. 1981. FEBS Lett. 123: 137–140.

    Article  PubMed  CAS  Google Scholar 

  90. Schacter, B. A. and Waterman, M. R. 1974. Life Sci. 14: 47–53.

    Article  PubMed  CAS  Google Scholar 

  91. Yoshida, T. and Kikuchi, G. 1978. J. Biol. Chem. 253: 8479–8482.

    Google Scholar 

  92. Sardana, M. K., Sassa, S. and Kappas, A. 1982. J. Biol. Chem. 257: 4806–4811.

    Google Scholar 

  93. Maines, M. D. and Sinclair, P. 1977. J. Biol. Chem. 252: 219–223.

    Google Scholar 

  94. Drummond, G. S. and Kappas, A. 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 5331–5335.

    Google Scholar 

  95. Drummond, G. S. and Kappas, A. 1980. Biochem. J. 192: 637–648.

    PubMed  CAS  Google Scholar 

  96. Yoshida, T. and Ishizawa, S. 1981. Biochem. Intern. 3: 181–187.

    Google Scholar 

  97. Abbritti, G. and De Matteis, F. 1973. Enzyme 16: 196–202.

    PubMed  CAS  Google Scholar 

  98. Correia, M. A., Farrell, G. C., Schmid, R., Ortiz de Mon- tellano, P. R., Yost, G. S. and Mico, B. A. 1979. J. Biol. Chem. 254: 15–17.

    Google Scholar 

  99. Grandchamp, B., Bissell, D. M., Licko, V. and Schmid, R. 1981. J. Biol. Chem. 256: 11677–11683.

    PubMed  CAS  Google Scholar 

  100. Drummond, G. S., Rosenberg, D. W. and Kappas, A. 1982. Biochem. J. 202: 59–66.

    PubMed  CAS  Google Scholar 

  101. Jollow, D. J., Mitchell, J. R., Zampaglione, N. and Gillette, J. R. 1974. Pharmacology 11: 151–169.

    Article  PubMed  CAS  Google Scholar 

  102. Sasame, H. A. and Boyd, M. R. 1978. J. Pharmacol. Exp. Ther. 205: 718–724.

    PubMed  CAS  Google Scholar 

  103. Bar-Nun, S., Kreibich, G., Adesnik, M., Alterman, L., Negishi, M. and Sabatini, D. D. 1980. Proc. Natl. Acad. Sci. U.S.A. 77: 965–969.

    Article  PubMed  CAS  Google Scholar 

  104. Kikuchi, G. and Hayashi, N. 1981. Mol. Cell. Biochem. 37: 27 - 41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, Boston

About this chapter

Cite this chapter

Kikuchi, G., Yoshida, T. (1983). Function and induction of the microsomal heme oxygenase. In: Najjar, V.A. (eds) Enzyme Induction and Modulation. Developments in molecular and cellular biochemistry, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3879-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3879-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3881-9

  • Online ISBN: 978-1-4613-3879-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics